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ABSTRACT

Estimating Life Loss for Dam Safety Risk Assessment

Duane M. McClelland and David S. Bowles

Estimating Life Loss for Dam Safety Risk Assessment explores the need for a new life-
loss model in dam safety risk assessment, historical foundations on which that model can be
built, and issues that are critical for a successful life-loss model to address. After critiquing
existing life-loss models, the work presents a summary of historical insights that were derived by
characterizing flood events on the level of subpopulations at risk, using nearly 100 carefully
defined variables. Building upon both conceptual and historical insights, the work culminates by
presenting the conceptual basis for a new life-loss model that remains under development.

Chapter I introduces the topic of dam safety risk assessment and the central role that life-
loss estimation plays in that field. Chapter II discusses important preliminary considerations in
model development. Chapter III provides a detailed review of previous life-loss models that
pertained to floods, including a critique of each. Chapter IV explores the DeKay-McClelland
model in detail and raises serious concerns regarding its future use. Chapter V defines nearly 100
variables and their respective categories for use in characterizing flood events. Chapter VI
provides a detailed outline of historical insights that relate to flood events in one of 18 logical
categories. Chapter VII explores relationships between certain characterizing variables that may
prove useful in life-loss estimation. Chapter VIII provides a summary, conclusions, and
recommendations for future research. Appendices A through D provide material related to over
900 pages of unpublished working documents developed while characterizing 38 flood events
and nearly 200 subpopulations at risk.
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PREFACE

Jeana, my youngest, looked up at me and asked, “Mommy, is this the end of time?” I
said, “No, honey, the end of time will come with fire, not water.” Just as I said that, a
transformer hit the train trestle, and fire was shooting out everywhere, and then the railroad
trestle came down in the water. That just about scared Jeana to death. (Deitz and Mowery, 1992,
p. 184, quoting Barbara Spears who lived through the Buffalo Creek dam failures.)

The water over the crest was more than 10 ft in depth, and was rising at the rate of 18
inches an hour. The fall of the water was about 40 ft, and the roaring and surging that it produced
can be better imagined than described. It was grand and awe inspiring, and nothing in my
opinion could in any measure compare with it, except the falls of Niagara.

While thus gazing with awe on a sight such as I had never before witnessed, I noticed a
sudden commotion of the waters near the center of the dam. For a moment the water where the
commotion occurred seemed to recede, but it was only for a moment. It then shot upward in a
tremendous spout to a height of perhaps 50 ft as if in gleeful fury, and I saw that the dam was
giving way. The commotion spread toward the east end of the dam, and there was a trembling of
the earth. The mighty waters roared and plunged with an indescribable fury, and the river, which
a moment before had presented a scene of graceful grandeur as it curved over the dam, was
turned into a seething maelstrom, so awful and so terrible that nothing save the pen of a Dante or
a Byron could do it justice.

I was appalled and entranced. My feelings were such as I had never before and never
again hope to experience. Suddenly above the dismal roar of the surging raging waters there
came a cry. “The dam is breaking, the dam is breaking.” The sound of the cry was as dismal as
that of the maelstrom, and people shuddered and their blood seemed chilled, although the sun
shone warmly from a cloudless sky. When the break occurred the distance from the crest of the
wave as it rolled over the dam to the water below was about 40 ft in height and of great width
and length suddenly released from confinement, and you will have a faint idea of the scene that I
witnessed at the great dam across the Colorado River yesterday morning, a few minutes before
11 o'clock. It was a scene that beggars all description, and as the waters plunged and roared and
seethed and foamed they seemed to laugh in utter scorn at the futile attempts of man to bridle
them. (McLemore, 1900, p. 252, describing the failure of Austin Dam in Texas. Some
typographical errors have been corrected.)
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CHAPTER I
INTRODUCTION

Preview

Dam safety risk assessment depends on credible estimates of life loss for hypothetical
failure events in order to quantify risk and make decisions about the construction, rehabilitation,
or removal of dams. Unfortunately, improvement in life-loss estimation has been one of the most
intransigent aspects of the field, causing some decision makers to seriously doubt the credibility
of analysts’ estimates. To attempt a significant step forward in our ability to model life loss, this
report intends to do the following:

1. Introduce the topic of dam safety risk assessment and the central role that life-loss
estimation plays in that field.

2. Discuss important preliminary considerations in model development.

3. Provide a detailed review of previous life-loss models that pertain to floods and
thoroughly critique each.

4. Explore the DeKay-McClelland model in detail.

5. Identify, define, and label variables that impact life loss and develop means by which
they might be used to characterize events.

6. Identify numerous historic flood wave events and thoroughly characterize as many as
time allows, focusing on dividing the impacted populations into subpopulations whenever
possible, and justifying every characterization in print for the reference of future researchers.

7. Provide a detailed outline of historical insights that arise during the characterization
process.

8. Provide a foundation for a companion working document that will present a new
conceptual life-loss model with guidance on its implementation and recommendations for
future research.

Background
High hazard, low frequency events have the potential to cause considerable damage to

property and loss of human life. Some events are outside human control, such as hurricanes,
tornadoes, earthquakes, and precipitation-induced floods. Some events are a direct result of



human or engineering failures, such as airplane crashes, toxic chemical spills, or accidents at
nuclear reactors. Dam failures generally fall in between these extremes, sometimes resulting
from faulty design under otherwise favorable environmental conditions and sometimes failing
despite superior engineering after being overwhelmed by an extreme flood, earthquake, or latent
geotechnical defect.

Unfortunately, it is impossible to so overdesign every dam that no dam will ever fail.
Theoretically, there always remains the possibility that a dam might have received a hidden and
critical flaw during construction, that there is a latent weakness in the soil or rock supporting the
dam, that the dam will deteriorate with time, or that a loading greater than previously anticipated
might occur. On a practical level, there are insufficient disposable resources to improve the
safety of every dam without limit.

When one considers that many small, isolated dams have little potential for causing
damage while others tower above densely populated regions and could kill thousands if failure
occurred, it makes sense to design some dams for a higher level of safety than others. A
reasonable criterion governing the design requirements for a dam is the risk it poses to lives,
property, the environment, or other considerations. Focusing on the most important criterion—
the risk to human lives—risk depends on the likelihood of dam failure and the likelihood that
lives will be lost given a failure. Annualized risk to human lives can be defined as follows, where
the summation is over all failure modes:

risk = X(probability of any possible failure circumstance)*(expected number of fatalities
attributable to that failure circumstance)

Society has a vested interest in protecting lives by requiring due diligence from dam
safety officials and engineers. One can be diligent by following strict, deterministic rules
embodied in an engineering code, or one can seek to better understand the true nature of risk by
quantifying it probabilistically. Generally, deterministic approaches have governed in the past,
while probabilistic risk assessment has gained increasing credence and popularity over the past
two decades.

At the risk of oversimplification, deterministic approaches seek to surpass minimum
standards with limited regard to the precise reduction in risk accomplished, the quickest or most
economical means of reducing risk, or the order in which dam safety rehabilitation projects
should be approached within a portfolio of dams. Instead, a dam is designated as adequate or
inadequate based on a set standard, such as its ability to retain or pass the probable maximum
flood without failure. Standards may be raised or lowered based on a dam’s hazard classification
(its ability to kill people or damage property), but this classification is not strictly probabilistic
and is usually limited to three categories.

Probabilistic risk assessment seeks to meet or surpass minimum standards by explicitly
quantifying the risk associated with the status quo and each proposed rehabilitation alternative
(including dam removal). In this case, the standard might not be the retention of a particular
flood, but the minimization of risk to life, property, the environment, or other considerations.



Whether this standard results in more or less risk than a deterministic approach depends on the
criteria set by decision-makers. Regardless, a probabilistic approach requires detailed
consideration of every conceivable failure mode and consequence, forcing analysts to consider
the unique aspects of each dam, some of which might otherwise be overlooked. It also requires
risk to be specifically quantified. This allows decision-makers to compare the rate and degree of
risk reduction between alternative rehabilitation sequences, to perform detailed cost-risk
reduction analyses, to prioritize dams within a portfolio, and to allocate limited funds where they
will do the most immediate good.

In many cases it can be demonstrated that enslavement to a deterministic standard will
cause less risk reduction, reduce risk more slowly, or squander valuable resources on minimal
risk improvements when compared to alternative solutions discovered during the risk-assessment
process. However, it is important to remember that probabilistic risk assessment is simply one of
many nonbinding tools to guide the choices of decision-makers: risk assessment itself does not
force any particular decision and it can be used harmoniously as a complement to more
traditional, deterministic methods of dam safety assessment.

Overview of Risk Assessment and the Need for Improving Estimates of Life
Loss

Dam safety risk assessment is like a stool that stands on three legs. These legs quantify
the likelihood that various initiating events (hydrologic, seismic, structural/internal, mechanical,
or human error) will occur; the likelihood that the dam would fail given these initiating events;
and the likelihood that, given a failure, the resulting flood wave would result in various levels of
damage. Analysts use event-tree models with either discrete branches or probability distributions
to quantify the risk posed by each combination. Adding a seat to the stool involves modifying
these event trees to explore the risk-reduction provided by various remedial upgrades.

Quantifying the risk in this way helps dam safety decision-makers identify the potential
vulnerabilities of a given dam, understand which vulnerabilities are most important, and identify
which dams in a portfolio are most urgently in need of attention. It also allows decision-makers
to compare the cost-benefit relationships for each remedial possibility and to target limited funds
in ways that maximize the risk-reduction benefits in the shortest period of time.

The meaningful quantification of risk depends on credible estimates of the damages that
would result from each significant failure scenario. Loss of human life is generally accepted as
the most important consequence so it often dominates dam-safety decisions. Unfortunately, the
confidence with which life loss can currently be estimated is low. This high level of uncertainty
applies to both statistical confidence limits and to expert opinion. As such, this single limitation
is a critical hindrance to the credibility and value of dam-safety risk assessment results. Indeed,
some would like to push the stool over on its weak leg and abandon probabilistic risk assessment
altogether.



The Problem and the Primary Goal

Life-loss estimation is difficult because floods are remarkably unique and the dynamics
that affect life loss are amazingly complex. Fortunately, relatively few dams have caused life loss
and the amount of life loss has often been lower than people might intuitively expect.
Unfortunately, this makes good historical data on life loss rare and empirical studies challenging.
However, whether a model is based on an analytical description of human-flood interactions or
whether it is based on a regression equation derived from historic dam failures, confidence in the
model must depend on its correlation to actual life-loss/flood-wave dynamics. Empirical research
cannot be avoided.

It would belie the inherent uncertainty endemic to dam failure life-loss estimation if this
current work sought to offer a final solution. Instead, it is hoped that by expanding the database
of historic dam failures, by offering detailed critiques of existing life-loss models, and by
exploring new variables, a new model might be developed that can be used with greater
confidence than has been possible in the past. Also, since the quality of any model will be
limited by the quality of empirical information, a central goal of this work is to provide an
extensive database with sufficient documentation to serve as the starting point for future
research. In light of the evolving nature of this specialized field, this may be the greatest
contribution of this report.

Important Terms and Symbols

Chapter V defines nearly 100 different variables that affect life loss. For now, however, it
is important to introduce a few key terms that will be used frequently in the text. Loss of life
refers to the number of people who perish. It has frequently been shortened to LOL in the past,
but it will generally be shortened to L in this text to be consistent with conventions introduced
later. The population at risk is the number of people who would get wet from a flood if they did
not evacuate. The exact nuances of the phrase are not important at this point, but it has
historically been shortened to PAR and will be written as Par in this text. The threatened
population is a subset of Par that fails to evacuate before the flood wave arrives. It will be
shortened to Tpar. Warning time is the time between the first warning to reach Par and the
subsequent arrival of the flood wave. It will be coded as Wt. When a symbol is followed by the
subscript 1, the symbol refers to a subPar (Par;), unless a specific term is defined with the
subscript (for example, as defined in Chapter V, Wt; can refer to individual warning time or the
warning time for a subPar, depending on context). Many of the symbols in this text, including
Par, Tpar, and Wt, will be used for both the singular and plural forms of the underlying names.

Because nearly 100 characterizing variables will be defined in Chapter V, a variable
name followed by its symbol in parentheses will often be used as an aid to the reader. This
convention will generally not be followed, however, when symbols are used multiple times in the
same context or when they are used in equations. Also, it is assumed that the reader will
memorize the symbols presented above—Par, Tpar, L, and Wt; Par;, Tpar;, Li, and Wt,—and
their derivatives that will be defined later (for example, average warning time, Wt,y,).



As a further aid to the reader and future researchers, Appendix D contains abbreviated
definitions of every symbol defined in Chapter V and their means of coding, both alphabetized
by symbol and presented by symbol name in the order they are defined in Chapter V.

Organization of the Paper

Chapters I and II present the nature of dam safety risk assessment, the important role life-
loss estimates play within that field, theoretical considerations relevant to model development,
and the difficulty of selecting an unbiased data set for regression analyses.

Chapter III presents every important, flood-related life-loss model that had been
developed or proposed up to 1998. The chapter describes the contributions and shortcomings of
each model in detail and concludes with a summary of essential model components and
considerations for representing those components.

Until recently, the DeKay-McClelland regression equation DM-2d (presented in Chapter
IIT) was the dominant life-loss equation in use. However, it has often been used in a manner
inconsistent with its development and in violation of the assumptions that must be satisfied for
its estimates to be considered reliable. Hence, Chapter IV explores this equation at length, raising
important questions about its credibility and its usefulness.

Chapter V provides an extensive list of variables that pertain in some way to life loss
associated with dam failures or catastrophic flood waves. Although many of these variables were
identified in some form by previous researchers (see Table 8 in Chapter III), this is the first time
that most of them have been given specific names, symbols, definitions, and categories by which
they can be coded. Other variables, especially those that show the greatest promise for estimating
life loss, have been defined for the first time and play a critical role in the proposed model
presented below. All the variables are summarized in easy-to-use reference guides in Appendix
D.

Chapter VI provides the historical and theoretical foundations on which one or more new
models can be developed. Table 16 details the ways in which people perish during floods and
Table 17 details ways in which people survive floods. Table 18 then offers a way to break issues
that affect the rate of life loss into 18 logical categories. The remainder of the chapter catalogues
numerous historical insights that are useful for gaining a good understanding of the real-world
dynamics within each category. These insights are supported by event characterizations fully
recorded in unpublished working documents that underlie the examples and summaries in
Appendix B and the master chart of characterized values in Appendix C; as well as by other
failure events that have been studied but not yet characterized.

Chapter VII presents important goals for a life-loss model and explores relationships
between potentially promising characterizing variables and concepts important to life loss.
Chapter VIII presents a summary, conclusions, and recommendations for future research.



Appendices A through D provide material related to over 900 pages of unpublished
working documents developed while characterizing 38 flood events and nearly 200
subpopulations at risk. A template was developed to standardize these characterizations, and they
followed the guidelines and definitions presented in Chapter V.



CHAPTER II

PRELIMINARY CONSIDERATIONS IN MODEL
DEVELOPMENT

Attendant Circumstances and the Uniqueness of Flood Events

All else being equal, life loss following a dam failure would be largely determined by
evacuation characteristics and flood dynamics. However, there are a number of factors which
contribute to the uncertainty inherent in any life-loss outcome. Many of these are not amenable
to analysis at this time, but an awareness of the issues helps one understand how complicated and
unique flood events can become.

First, two phrases should be defined. Attendant circumstances are detrimental and usually
transitory conditions that accompany a specific type of dam failure and that make life loss more
likely. Susceptibility to loss of life is an inherent property of a community that is independent of
transitory influences. Just as insurance companies recognize that certain categories of drivers are
more susceptible to accidents than others, some communities are more susceptible to fatalities.
Attendant circumstances and susceptibility to life loss combine to influence life-loss outcomes.

To get a feel for the uniqueness of each failure event, one can begin with the cause of
failure. The nature of the attendant circumstances for the three main failure modes—hydrologic,
seismic, and internal—are likely to be quite different. A probable maximum flood (PMF) can
loosely be defined as a flood resulting from the most runoff-producing combination of
meteorologic and hydrologic events that are physically credible; that is, the worst flooding that
can be expected to occur. Storm conditions capable of causing a PMF-level flood event may
include hurricane-force winds, certainly would include local flooding, and would likely provide
inhospitable environmental conditions including extreme darkness and risks of hypothermia. The
risk of injury due to driving accidents, falling trees and limbs, live power lines, and airborne
debris would be heightened. Power outages would be extremely likely, especially where wires
were above ground, and they could be expected on a wide scale, requiring hours or days to
repair. Evacuation notification would be hampered and evacuation itself could expose people to
extreme hazards like flooding, falling trees, undermined roads, and accidents while driving in
darkness without street lights in driving rain. Such conditions might make decision-makers
reluctant to issue an evacuation order prior to the initiation of an actual dam breach. A delay
would reduce people’s danger if no failure occurred, while greatly increasing their danger if a
failure did occur.

A seismic failure would expose the Par to a different set of hazards. Streets might buckle,
individuals could become trapped in rubble or buildings in the path of the flood, power lines and
gas mains might break causing fires and blocking streets, bridges could collapse, escape routes
might become blocked, traffic lights would probably fail, and emergency crews would be
delayed or overtaxed.



A piping or internal failure is unlikely to experience any unusual attendant circumstances.

Compounding the attendant circumstances surrounding a particular failure mode are the
attendant circumstances associated with the timing of the event. Traffic hazards and potentially
lethal cold could accompany a failure in winter. Evacuations are more difficult at night than
during the day due to difficulties in notifying families, the extra time individuals require to
respond, and the extra hazards that come with darkness. Human response patterns are likely to be
different when families are together (evenings, weekends, and holidays) than when they are apart
(work hours).

A community’s susceptibility to life loss is governed by such factors as the size of the
dam, the distance from the dam, the nature of early warning systems, the slope of the valley, the
width of the valley, the location of the houses, the tendency of the population to be in the open or
within buildings, barriers to evacuation like backyard fences, the age and mobility of the
population, the height of structures, and numerous other factors.

Significantly, traditional variables like flood depth and forcefulness, the size of the Par,
and the warning time do not take attendant circumstances into account. Attendant circumstances
have been lumped indiscriminately into single data sets in earlier efforts to estimate life loss
from dam failure floods

The preceding introduction to the uniqueness of flood events suggests several lines of
preliminary inquiry.

1. Cause of dam failure: Can all dam failures be grouped into a single statistical population,
or should dam failures be analyzed according to failure mode, attendant circumstances, or
other refining criteria? What if the resulting data sets would be too small to be statistically
useful? Can flash floods be included with dam failures in a common data set?

2. Magnitude of storm: In light of the unique attendant circumstances found in extreme
storms, does the weather influence loss of life, or just the size of the flood? In other words,
is the expected loss of life due to a probable maximum flood (PMF) comparable to the loss
of life expected from a flood of the same volume produced by a lesser storm over a larger
basin? How can one reasonably predict the life loss in a PMF-level event if no such event
has been witnessed in the modern era?

3. Magnitude of seismic event: Can one expect loss of life following a maximum credible
earthquake (MCE) to be the same as from a flood of the same volume following a sunny-day
failure? How can one predict L in a MCE-level event if no such dam failure has been
witnessed in the modern era?

4. Effects of attendant circumstances on traditional variables:

a. Flood forcefulness: Does woody debris deposited from a storm increase the lethality
of a flood? Does rubble from an earthquake? Is it reasonable to assume that the lethality
of a given velocity/depth ratio is the same for piping, hydrologic, and seismic failures?



b. Size or location of population at risk (Par): Do routine schedules (population
distributions) apply during severe storms or shortly after seismic events, or will schools,
campgrounds, and businesses be closed and empty? Do people swarm outside following
severe earthquakes, placing themselves in greater danger?

c. Warning time (Wt): Under what conditions do phone systems become jammed or
severed and how does this affect the dissemination of warnings? Is the average warning
time the important variable, the initial warning time, or some other characterization of
warning time?

d. Characteristics of Par: What effect do buildings play in sheltering Par? How do
children, the elderly, the infirmed, recreationists, or those who speak a minority
language impact estimates of life loss? What about false alarms or prior flood
experience?

e. The nature of probability: Is an empirically-based prediction necessary, or can
expert opinion offer estimates of life loss with equal credibility? How would one
become an expert?

Delimiting a Data Set: When Should Fatality-Free Failures Be Included?

More than 400 dams failed in the United States from late 1985 to late 1994—most of
them small and many unregulated—and less than 2% of these resulted in fatalities (Graham,
1998). A small dam failure or a partial dam failure is easy to overlook; without something
spectacular, little public interest is aroused. Consequently, smaller dam failures may get ignored
when life loss (L) = 0, even if life loss was highly probable. Recognizing this, where is the cutoff
for dams that should be included in a data set as hazardous, yet yielding L = 0 by chance, versus
those that were never truly hazardous? In other words, which zero-life-loss events should one
include?

Two dangers exist. If only dams with actual life loss are included in a data set, then the
resulting regression equation is likely to overestimate expected life loss, finding it at every turn.
If all dam failures are included in a data set, the number of zero-fatality events are likely to
dominate those with life loss and skew an equation toward underestimation for truly hazardous
events. Unfortunately, the dividing line is subjective.

This section and the next will present bias-producing shortcomings to the data set
produced by the United States Bureau of Reclamation (USBR). The reason is simple: Beginning
in 1986 and culminating in 1989, they produced the most prominent data set of lethal dam
failures and flash floods. This data set was explored by Brown and Graham (1988) and later
expanded by DeKay and McClelland (1991, 1993b)—developers of prominent life-loss models
and equations that are presented in Chapters III and IV.

The USBR (U.S. Bureau of Reclamation, 1989) has concluded that its equations are
biased to overestimate life loss since the underlying data set excludes nearly all zero-fatality
events. To test this, they screened an extensive database of flash floods occurring in May, June,



July, or August of 1983 and 1984. Beginning with all floods that caused loss of life, or at least
$50,000 in damages, they then discarded events with unreliable estimates for Par. Combining the
66 that remained, Par numbered 25,000 and L numbered 25. Using the regression equations
developed by Brown and Graham (U.S. Bureau of Reclamation, 1989), and assuming the cases
would by typified by inadequate warning, their regression procedure would have predicted a total
of 1,559 deaths for these 66 events. Moreover, 86% of the flash floods resulted in no life loss.
The USBR concluded that their equations were conservative.

While their method raises questions of its own, such as the appropriateness of mixing
flash floods and dam failures and whether they treated Wt in a realistic manner, it does highlight
the difficulty in selecting the ideal data set. Ultimately, a// data sets are potentially biased,
leading to regression equations that are likely to be most accurate when applied to events like
those in the data set. Hence, a data set can favor high-lethality events, low lethality events, or any
subset in between. The bias may not be the level of life loss, but another factor like the relative
length of warning times, the relative size of Par, the ease with which people evacuate, the time of
day or night, the size of the reservoir, or any one of dozens of other variables. Unless all possible
variable combinations are included in the data set in a representative manner, bias is
unavoidable.

Recognizing this, several observations can help define the type of data set that best serves
the practitioner. First, overestimation of life loss is undesirable because it may cause dam owners
to spend money on safety improvements rather than more worthy projects. Underestimation of
life loss is undesirable because it might lead to unsafe dams going without rehabilitation,
needlessly increasing society’s risk. However, slight overestimation is probably the lesser of the
two evils.

There are several possible ways to minimize the risk of bias. First, rather than arbitrarily
adding zero-life-loss events to a data set, one could compile a separate database of such events
and compare them to events with only a few deaths. It is possible that distinguishing
characteristics will appear that will clarify the boundary. Second, if relationships can be
developed for which life loss (L) has a linear relationship with the most important variables, bias
will be minimized. Third, large Par could be broken down into subPar. If some of these subPar
are examples of zero life loss, they might help define the boundary between lethal and safe
conditions because it is known that the same event with different conditions was capable of
taking lives. Fourth, if subPar are highly homogeneous, they can be grouped according to bins.
In this way, the key conditions that lead to incipient life loss can better be identified and used to
screen new subPar or global events.
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Going Beyond the Data Set: When Should a Regression Equation Be Viewed
as Inapplicable?

As pointed out by Graham (1998) and DeKay and McClelland (1993b), the Bureau of
Reclamation’s data set includes no dam failures caused by earthquakes, nor any dams above very
large Par (greater than 10,000) for which warning time was near zero. It contains no failures due
to PMF-level flooding, terrorist attacks, or landslides into the reservoir. No large, modern,
concrete dams and few concrete or tall dams are included in the failure set, with only 7
exceeding 15 meters in height. Since they code Wt dichotomously with the highest value at 45
minutes, longer warning times do not enter directly into their equations. The USBR’s data set
was also limited to failures occurring after 1950 in countries with comparable levels of
development to those in the U.S.' Hence, the largest U.S. dam disaster—the failure of South
Fork Dam near Johnstown, Pennsylvania, in 1889, in which 2,209 people died—was omitted; as
was the largest non-Biblical flooding disaster in world history, when China’s Banqiao and
Shimantan Dams, along with dozens of smaller dams, failed in 1975, killing at least 26,000
people and possibly more than three times that many. As more variables are considered, more
unique failure scenarios are found to be missing or underrepresented.

More recent western failures were also omitted either due to lack of data or because they
were viewed as uncharacteristically unique. A classic example of the latter reveals the potential
for a catastrophic dam failure to virtually annihilate significant populations downstream.
Consider Vaiont Dam in northern Italy on October 9, 1963. Wayne Graham describes this event
in a draft report:

A 270 million cu. m. landslide fell within 20 to 30 seconds into the lake formed behind
the dam. The dam, at the time the world’s second highest, did not fail. However, the
effect of this huge mass of material that ran into the lake, which was almost at the
maximum water level, was a gigantic wave of 50,000,000 cu. m. of water that, after
rising for 250 m in height, poured both towards Longarone, 4 km downstream from the
dam, and towards the lake, partly running over the towns of Erto and Casso. About 2000
people died as a result of this event. The fatality rate was about 94% in the community of
Longarone [1269 out of 1348 residents; U.S. Bureau of Reclamation, 1989] which was
about 2.0 kilometers downstream from the dam. At Belluno, about 16 kilometers
downstream from Longarone, there was damage to more than 150 houses, however, the
river dikes in most places prevented spillage into built-up areas. (Graham, 1998, p. 4-2)

The 875-ft high concrete arch dam, then the highest arch dam in the world, was
overtopped by more than 300 ft, and up to 230 ft of water filled Longarone. Most of the 79
survivors lived in a cluster of houses out of reach of the flood waters (U.S. Bureau of
Reclamation, 1989). Downstream, there were reportedly few fatalities in Belluno, despite
substantial property damage. Apparently, once the flood wave attenuated to a point where it

! Examples for which development levels are important include communication systems, flood control
systems, transportation systems, construction standards for buildings; and construction, maintenance, and
monitoring standards for dams. The USBR data set was also limited to cases having sufficient information for
parameter quantification (U.S. Bureau of Reclamation, 1989).
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resembled more moderate dam failures, and given the additional warning time provided by extra
distance, life loss more closely approximated that found in the USBR data set. Nevertheless,
about 700 people perished in communities other than Longarone, both upstream and downstream
from the dam, so the cataclysmic nature of the failure mode proved consistently lethal in ways
that are beyond the scope of most modern dam failures.

An example of a large concrete dam that failed in the U.S., and which was excluded from
the USBR data set, is St. Francis Dam. It failed at midnight under normal weather conditions
when California was much less populated than it is today. The 57.3-m high structure,
impounding 4.69 million cubic meters of water, failed due to structural defects, killing about 420
people and claiming lives for an unusually extended distance downstream. Although it is
common for deaths to be restricted to the first 24 km (Graham, 1998), 84 out of 150 people
located 27 km from the dam at the California Edison Construction Camp perished—a fatality
rate of 56%. Closer to the dam, death rates in isolated Par; were 100%. Warning and evacuation
efforts did not begin until a few hours after the dam had failed (Graham, 1998).

Such case studies remind us that the USBR data set is limited, covering only a narrow
selection of failure modes, magnitudes, and attendant circumstances. DeKay and McClelland
(1993b) specifically advised that their equation should not be used for events like Vaiont and St.
Francis Dams. The point of this extended discussion is that, at present, the empirical data
available are not sufficiently comprehensive to justify rigid enslavement to any regression
equation or set of equations that might be developed. If reason suggests that a hypothetical event
will be unlike those underlying an equation, analysts must reserve the right to adjust their
estimates accordingly. Analysts should never forsake reason in slavish reliance on a readily
available formula.
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CHAPTER III

HISTORIC METHODS FOR ESTIMATING LOSS OF LIFE
IN THE EVENT OF A DAM FAILURE OR A FLASH
FLOOD

Introduction

Historic methods for estimating the expected loss of life in the event of a dam failure fall
into two main categories—those that are empirically based and those that rely on parameters
considered to be theoretically important, but for which insufficient data exist to calibrate them
empirically. Several models in each category deserve review. The dominant empirical
approaches have been developed for the United States Bureau of Reclamation, first by Brown
and Graham (1988), then by DeKay and McClelland (1993b). Brown and Graham (1988) built
on the conceptual model developed at Stanford University by McCann et al. (1985) for the
Federal Emergency Management Agency (FEMA). Quite recently, B.C. Hydro of Canada has
rejected the empirical models and developed a new conceptual model (Assaf, Hartford, and
Cattanach, 1998). While having some theoretical appeal, and offering promise, at the time of this
writing the parameters in this model had not been sufficiently calibrated to yield results worthy
of high confidence. These models, as well as several others, are summarized below.

Ayyaswamy and Others, 1974
The Model

Colleagues at UCLA prepared four reports for the U.S. Atomic Energy Commission to
evaluate the probabilities and potential consequences to ground-based Par' of dam failures,
airplane crashes, catastrophic toxic chemical spills, and meteorites striking nuclear reactors. The
first report addressed dam failure, focusing exclusively on “complete and instantaneous dam
failure, with total release of the impounded water . . . . Dam failure is equated with the
probability of an intensity IX or X earthquake [on the Modified Mercalli earthquake intensity
scale] in the dam area” (Ayyaswamy et al., 1974, p. 3). Earthquakes were emphasized due to
their relative frequency in California, the location of 11 dams chosen for model application.

The approach had five main components: 1) a computer model to estimate the probability
of a magnitude IX or X earthquake, 2) a flood routing methodology yielding travel time and
inundation zones, 3) the use of census data to quantify Par during the day and during the night, 4)
a curve expressing the evacuation rate, and 5) a mortality relationship based on flood depths.

'Like “deer,” Par will be used in this paper for the singular form (population at risk) and the plural form
(populations at risk). The same will hold true for derivatives of Par like subPar, Par;, Tpar; Ptpar;, and other variables
like Wt.
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Recognizing that the model was breaking new ground, the authors considered the
estimated risk to be a first approximation. They recognized that their computer model relied on
uncertain frequency relationships and soil conditions, and that other earthquake models existed
and could later be developed. They also noted that only 2 out of 18 dams in a previous study had
failed completely when subjected to earthquakes, so the theory that a IX or X magnitude
earthquake would necessarily cause an uncontrolled release of water was not valid (Duke, 1960).

Details of the model can be summarized as follows. Flood routing relies on Manning’s
equation,

0= [1'49}4132/351/2 (English units)
n

using the Normal Depth Method with Manning’s-n values ranging from 0.05 to 0.11. Analysts
must account for changes in the flow regime at obstructions in the channel. Where an upstream
failure overtops a second dam, the subsequent outflow is predicted using equations for
rectangular, broad-crested weirs.

Once the flood depths are known, the fatality rate is considered to be 100% wherever
flood depths reach 10 ft and 0% elsewhere. Hence, population at risk (Par) reflects the number of
individuals who could be submerged to 10 feet if they did not evacuate. Since this can be greater
during the day in a setting where businesses occupy the floodplain near the river, life loss (L) is
calculated separately for day and night failures. At the time the model was proposed, Par was
estimated using the 1970 census tracks from the U.S. Bureau of the Census.

To obtain L, analysts incrementally reduce Par by the percentage of people able to
evacuate over increments of flood-wave travel time. They first develop an evacuation rate
histogram based largely on experience. Numerically integrating this, they produce a smooth
evacuation curve. Time is measured from the moment of failure (the time of the earthquake) until
the wave reaches the center of each reach. The loss function is applied to that fraction of Par that
fails to evacuate. Reaches are delineated using uniform increments of distance from the dam.

Contributions

This model broke new ground by attempting life-loss modeling for the purpose of
assessing dam safety. It recognized the unique danger posed by large-magnitude earthquakes and
it identified the five major components of almost all consequence models:

1. The likelihood a failure will occur, based on the probability various loadings will occur and
that the dam will fail under each of those loadings;

2. Flood mapping to define the flood zone;

3. The quantification of Par by relating census data to the flood zone;
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4. The reduction of Par through an evacuation function dependent, at least in part, on the
amount of warning time; and

5. The application of a loss function to those who remain in the flood zone when the flood
arrives.

Importantly, the model recognizes that not all individuals who get wet will lose their lives
and that the size of Par changes with the time of day.

Shortcomings

In the 11 cases to which the model was applied by the authors, losses ranged from 11,000
to 260,000 deaths, exceeding the historical record for dam failures in the United States by several
orders of magnitude. While the model lacked both calibration and refinement, the high estimates
for L should not be discarded out of hand. It is safe to say that few if any historical dam failures
involved instantaneous dam failure due to an extreme earthquake at a large reservoir above a
densely populated area. On the other hand, since the estimates generally exceed the historical life
loss from the world’s worst dam failure events, the model may be overly conservative even for
instantaneous dam failures. This was a general trend in the early days of dam safety loss
estimation.

The second, third, and fourth components of the model, numbered above, need
refinement. Their method of flood mapping was based on unrealistic assumptions. Manning’s
equation assumes a steady-state flow condition, which bypasses the effects of attenuation,
turbulence, and momentum that dominate instantaneous flood waves. Modern methods of flood
routing using a dynamic model like DAMBRK or FLDWAYV should yield more realistic results.

With respect to their loss function, empirical functions are more defensible than an
arbitrary fatal/nonfatal division at a depth of 10 ft.

While evacuation curves could be customized, the authors presented only one set (see
Ayyaswamy et al., 1974, p. 36 — 37). These curves assume that 50% of the population can be
evacuated in the first hour, 75% within two hours, and that complete evacuation requires more
than 10 hours. While this may be realistic for heavily urbanized areas, it is counter-historical for
smaller communities and is probably overly conservative for the riverside swath likely to see
depths over 10 ft. In any case, the curves do not appear to have been empirically based. Also,
warning time is assumed to be identical to wave travel time in all cases, which appears to be
unrealistic for an instantaneous, earthquake-induced dam failure.

None of these shortcomings reflect poorly on the authors, however, since they
encouraged refinement of these results through future research. In their words, “the conclusions
should therefore be regarded as mainly illustrative and very tentative” (Ayyaswamy et al., 1974,

p. 6).
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Friedman, 1975

The Model

Friedman (1975) developed a broad model that could be applied to virtually any natural
hazard: he addressed earthquakes, hurricanes, floods, tornadoes, wind, and hail. He calculated a
loss potential index based on four factors: 1) a natural hazard generator used to determine the
frequency of earthquakes or storms by section of the United States; 2) local conditions that
modify the severity pattern proposed by the natural hazard generator; 3) Par, defined as the
number of persons exposed to the hazard and their geographic distribution based on an 85,000
point grid system crisscrossing the U.S. and input into a computer database from 1970 census
data; and 4) the vulnerability of the Par, which is its susceptibility to life loss during an event of a
given severity. These four factors represent the five common components identified under
Ayyaswamy’s model: determination of the probability of a failure, mapping the flood inundation
area, quantification of Par; modification of Par or a loss function to account for temporal, spatial,
or local conditions; and application of a loss function.

Recognizing that losses in natural hazards are not random with respect to time and place
among a population, Friedman asserted that losses must be estimated over an entire area, rather
than independently at individual sites. The natural hazard generator produces smooth contours
across the U.S., but these are made more jagged through adjustments for local conditions. In this
sense, if a community occupied more than one contour, Par would be effectively divided into
subPar.

Friedman’s four model components interact collectively to generate a Loss Potential
Index. Several types of qualitative interaction are illustrated in Table 3.1.

Friedman did not consider dam failures directly, but he applied his model to general
flooding and to flash floods by developing a computer simulation model for the U.S. Department
of Housing and Urban Development (HUD). This information was then used in the development
of the U.S. National Flood Insurance Program. He did not use the national grid system in his
model to calculate Par; instead, he used the 1970 Census to determine the number of structures in
each of 5,539 cities. He then determined the percentage of these that were located in the flood
plain from HUD data collected by the U.S. Army Corps of Engineers, the Tennessee Valley
Authority, and the U.S. Geological Survey. He divided each floodplain into six zones
representing different levels of hazard
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Table 3.1. Examples of qualitative relationships among Friedman’s model components (adapted
from Friedman, 1975, Table I-1, p. 4. An * indicates that the example originated with
Duane McClelland, who tried to follow Friedman’s general logic pattern)

Natural Hazard Local Loss Potential
Generator Conditions Par Vulnerability Index
weak good sparse low very low
weak good moderately dense | moderate low*
weak good dense high moderate*
moderate good sparse moderate low*
moderate medium moderately dense | moderate moderate
moderate poor dense moderate high
moderate poor moderately dense | high high
moderate medium dense moderate high
Severe medium moderately dense | high high
Severe poor dense high very high

based on the return period of floods of various depths. The number of dwellings were converted
to Par by assuming each dwelling housed an average of 3.0 people, based on summary
tabulations of the 1970 Census data.

The loss function was based on the estimated number of buildings expected to be
damaged. Using the annual flood tabulations of the American Red Cross, he assumed one
casualty would follow every 170 damaged dwellings, or every 85 dwellings in the case of flash
floods. Empirical studies of selected cities indicated that cities of different size showed no
variation in the distribution of dwellings across flood zones. Every city and every zone was
assigned the same ratio of commercial to residential structures as a first approximation.

Contributions

The greatest strength of Friedman’s model is that it recognizes that losses will vary across
the floodplain, so every city is divided into six subPar based on depths. This helps customize the
model to local conditions. Each subPar has a unique risk since the probability of inundation
decreases as the annual exceedance probability (AEP) of floods decreases.

Shortcomings

Unfortunately, while monetary damages increase with depth based on relationships
provided by the Federal Insurance Administration, the life-loss functions do not distinguish
between major and minor damages. Thus, while the loss functions are presumably based on
historical records, there is no way to account for the relative forcefulness of a flood or the height
of the buildings.
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Friedman accounts for spatial distributions but not for temporal distributions. That is,
there is no evacuation function, so no distinction is made between events having long or short
warning times. Perhaps this was omitted because warning time can be much more nebulous in
cases of general flooding than for dam failures.

Petak and Atkisson, 1982

The Model

The natural disaster model developed by Petak and Atkisson (1982) can be generalized
into a three-step procedure: 1) quantification of a hazard curve for a region (AEP vs. intensity of
event), 2) quantification of a vulnerability envelope or vulnerability probability distribution
(expected structural damages vs. intensity of event at the location of the structure), and 3) an
exposure distribution (how many of each type of structure, parcels of property, people, etc., are
exposed to each intensity level). These three components—hazard, vulnerability, and exposure—
are then related sequentially in an event tree to generate values for annualized risk. Ideally, the
three components are integrated and automated via a computer model.

They treated structural damage as fundamental. “Typically, estimates of other types of
losses such as death, building content loss, unemployment, and homelessness were related to the
expected levels of damage to buildings” (Petak and Atkisson, 1982, p. 105).

Although dam failures were not considered in isolation, they addressed riverine flooding
by dividing the floodplain into regions according to frequency of flooding, as shown in Table
3.2. They apportioned the floodplain based on the work of previous authors, including Friedman
(1975).

Contributions

The strengths of this approach are twofold. First, this was one of the first empirical
approaches since this method used data from actual natural disasters to predict the loss of life as
a function of the expected economic damages due to flooding (or any of 7 other types of
disasters).” Second, it recognized the importance of subPar, thus allowing L to vary with flood
depths by adopting different empirical damage functions for each flood zone. Grigg and Helweg
(1975) first reported the damage functions, but Petak and Atkisson modified them slightly.

Shortcomings

Although the approach was empirical, the available data were limited and not
characteristic of dam failures. Instead of using flood data, they assumed that deaths from

2 Earthquake, tornado, hurricane, severe wind, storm surge, tsunami, wind.
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hurricanes were evenly divided between storm surges (the rising of a large body of water due to
low local pressures and strong winds) and direct wind impacts. Flood losses were then assumed
to follow the same patterns as those for storm surges: 0.0956 deaths per million dollars of
damage to buildings

The drawbacks to this approach are obvious. First, storm surges are a rising of seawater
that can last for hours, that is generally not instantaneous but progressive, and that will be as
wide as the local coastline, rather than confined to a channel and its

Table 3.2. Distribution of subPar by flood return period for the model by Petak and Atkisson
(Petak and Atkisson, 1982, p. 117)

Return Period of | Fraction of Dwellings
Hazard Zone Flood (years) in Each Hazard Zone
A 2-5 0.135
B 5-10 0.150
C 10 -25 0.200
D 25-50 0.245
E 50 — 100 0.270
F more than 100 1.000

floodplain. In other words, it is very different from a dam failure. Second, arbitrarily dividing
deaths due to flooding and wind into a 50:50 ratio undermines the validity of an empirical
function. Third, assuming a linear relationship between economic damages and fatalities ignores
the importance of variables like warning time, evacuation pathways, the height of buildings, and
other factors affecting mobility. Fourth, economic damages make a poor surrogate for Par: not
only are the number of people in an area not necessarily proportional to the economic damages,
but a Par consisting of backpackers, tent campers, fishermen, or rafters would not be included at
all, even though they might face the greatest threat from a dam failure. The authors themselves
acknowledged many of these shortcomings.

McCann and Others, 1985: Stanford/ FEMA Model
The Model

McCann et al. (1985) recognized the importance of dividing a population at risk into
subPar. Their overall procedure can be summarized using the sequence of steps in Figure 3.1.
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Route the flood wave to determine its depths and boundaries. = Plot these on
a topographic map. = Superimpose the location and characteristics of all structures
onto the map. = Divide the map into zones [subPar] according to distance from the
dam and maximum depth of inundation. = Apply a loss function to each subPar. =

Sum to determine total loss of life.

Figure 3.1. Sequence of steps for the Stanford/FEMA Model (adapted from McCann et al., 1985,
Figure 6.1, p. 6-2).

This model allows the use of any modern flood routing method, but a single method
should be used consistently on all dams in a portfolio if a portfolio risk assessment is desired.
McCann et al. advocated the use of the National Weather Service (NWS) software program
DAMBRK for those familiar with it, as it represented the state of the art in dynamic flood wave
modeling in 1985. More recent versions of DAMBRK are still widely used today. This program
requires inputs describing the inflow hydrograph, the reservoir topography, the height of the
dam, the depth of the reservoir pool, channel cross sections and related topography of inundated
areas, and an estimate of Manning’s n values. Proposed alternatives to DAMBRK were the Soil
Conservation Service’s dam break flood routing procedure, a simplified NWS dam break
program called SMPDBK, and a method by the USBR (see McCann et al., 1985, p. 6-5 to 6-6).
In each case, the assumptions chosen—for example, the rate of breach development needed for
SMPDBK—are stated to be less important than their consistent application across dams in a
portfolio.

Analysts draw lines of consistent depth on a topographic map of the inundation area, then
cross-hatch these lines at set distances from the dam—say every mile. Matched pairs of the
resulting closed polygons (one on each side of the river) are combined to form subPar, though
they need not be matched in pairs if the zoning is dissimilar.’ Zones should be selected or
subdivided as necessary to represent contiguously similar land use (primarily residential or
primarily business). Analysts fill these polygons with coded symbols to locate structures. Life
loss (L) is estimated by using equations SF-1a and SF-1b and then summing across all subPar.

L =¢(d)*r,*P (SF-1a)

3 If this is difficult to picture, consider that a straight reach resembles the neck of a guitar. Since lines of
equal depth will roughly parallel the stream channel, the strings represent depth and the frets mark the distance from
the dam. Each resulting rectangle represents a subPar.
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L =¢(d)*r,* p,* N, (SE-1b)

1

where ¢(d;i) = fraction of people losing their lives as a function of depth,

r; = fraction of people present when the flood wave arrives among Par (1; is designated
Tpar; in the current work),

P; = population in a population at risk (P; is designated Par; in the current work),
Ni = number of people occupying a zone during business hours, and
pi = percent of time a given zone is occupied.

Notice that the equations are identical, except that the first applies to a residential area
and the second applies to a more transitory business district (or to a recreational area using the
same logic). The concept is a simple definition: loss of life equals the number of people being
flooded at each depth (r*P or r*p*N) times the percent who should perish at that depth [¢(d)].

The percent who perish is a function of depth, tabulated in Table 3.3. The flooded are
those who remain on the floodplain when the flood wave arrives, an estimate based on daily
occupational patterns, evacuation estimates, the quality/timeliness of the flood warning system,
the distance downstream or flood travel time, and the type of land use patterns. Table 3.4 offers
suggested values. Analysts can modify the suggested values to reflect their perception of the
local conditions. Values for P (population at risk), N (number of people occupying a zone during
business hours), and p (percent of time a given zone is occupied) must be estimated from local
records, observations, and conversations with local officials.

Contributions
This model provides great flexibility in assigning values to parameters by allowing the

analyst to consider local conditions and to consider factors not explicitly in the equation, such as
evacuation effectiveness and the quality of a flood warning system.
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Table 3.3. Values proposed by McCann et al. for ¢(d) (McCann et al., 1985, Table 6.2, p. 6-9)

Depth of Inundation (ft) Fraction of Lives Lost
2 0.00
4 0.05
6 0.20
8 0.40
10 0.60
12 0.80
>12 0.85
Table 3.4. Values proposed by McCann et al. for » (adapted from McCann et al., 1985, Table
6.3, p. 6-9)
No Warning System \ Good Warning System

Distance from the Dam (miles)

<10 20 30 50 <10 20 50 100

Typical Rural Area 1.00 | 0.80 | 0.20 | 0.10 | 0.70 | 0.40 | 0.10 | 0.00

Typical Residential 0.70 | 0.50 { 0.10 | 0.00 | 0.50 | 0.20 | 0.00 | 0.00

Area

The model also recognizes the variation in hazard faced by people in different locations, and the
importance of subdividing Par without having to track individuals.

Shortcomings

The great shortcoming of the model is that the value of every parameter depends on
subjective estimates without empirical calibration. This is compounded by the fact that a
different fatality rate must be specified for each uniquely defined set of subPar. Moreover, how
does one adjust a scale up or down when it is unknown whether the original scale is high or low?

The model’s creators suggested additional shortcomings. They acknowledged that travel
time is a more meaningful way of dividing Par than distance downstream, but they chose
distance out of convenience. Also, they recognized that life loss cannot be related to flooding
depth alone; flooding velocity is equally or more important. Velocity was ignored, however, to
simplify the model.

Significantly, like developers of the previous methods, the authors of the Stanford/FEMA
approach considered their model too simplistic to allow analysts to predict loss of life with high
confidence or accuracy. In fact, they offered it only as a simplified, preliminary tool for those
who had not yet developed procedures of their own.
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Subsequently, this model was slightly refined by the Institute for Water Resources of the
U.S. Army Corps of Engineers, as is described later in this chapter.

Paté-Cornell and Tagaras, 1986

The Model

Paté-Cornell and Tagaras (1986) suggested a general method for predicting life loss
based on adjusting a base casualty rate according to the efficacy of a warning system.
Once again, the five main elements of most models can be identified: determination of the
probability of a failure, mapping the flood inundation area, identification of the Par,
application of a loss function, and modification of Par, that function, or its prediction
based on temporal, spatial, or local conditions.

They proposed that analysts use the average historical rates of dam failures unless local
conditions and expert judgment allow more refined estimates. They give no guidance on routing
the dam break, but they assume it is possible to distinguish two zones: the wave path (zone 1)
and the inundation area (zone 2). These are not defined, but the distinction is important to their
model since the loss function assumes a 50% casualty rate in zone 1 and no casualties in zone 2,
making zone 1 the only region containing life loss or a population at risk, depending on your
perspective. The loss function is pseudo-empirical in the sense that it is an intuitive estimate
based on a review of failures like the one at Malpasset.”

They suggest that Par in zone 1 should be reduced according to the quality and timeliness
of any early warning system. Again they give no guidance, leaving the reduction up to the
judgment of the analyst.

This model bears considerable similarity to that first developed by Ayyaswamy et al.
(1974). Here, instead of assuming a 100% fatality rate at depths of 10 ft and 0% elsewhere, the
assumption is a death rate of 50% in the main path of the flood and 0% closer to the peripheries.
Both models allow Par to be reduced through evacuation. However, rather than calculating
separate losses for day and night, Paté-Cornell and Tagaras suggest averaging Par over the two
time frames.

Contributions

The model emphasizes the importance of an early warning system in facilitating a timely
and effective evacuation effort and in reducing the risk associated with a dam failure. The thrust

* Malpasset had a fatality rate of 50% only if zone 1 is defined so as to force this result; taking Par more
broadly, a Par of about 6,000 people was inundated and several hundred people died. In any case, the loss function
appears to have been derived as a first-cut, intuitive estimate, and rates much higher than 50% have been observed in
other failures, such as the failures of Vaiont or Stava Dams in Italy.
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of their work was to increase the benefit-cost ratios in economic analyses to justify the
construction of dams and to support dam safety remediation projects.

Shortcomings

Like Ayyaswamy’s model, this model relies on intuitive estimates of life-loss rates
without true empirical support. The authors were not, however, attempting to offer a refined
model. Rather, they were demonstrating the importance of incorporating risk when calculating
benefit-cost ratios, thus providing justification for future model development and the
implementation of early-warning systems.

Institute for Water Resources’ Revision of the Stanford/ FEMA Model, 1986

On pages 23 — 28, Lee at al. (1986) summarize and illustrate changes made to the
Stanford/FEMA model by the Institute for Water Resources (IWR) within the U.S. Army Corps
of Engineers. In brief, IWR replaced river miles as a surrogate for warning time with warning
time itself.

Lee et al. (1986, p. 23) refer to the source as the IWR with the reference, “Institute for

Water Resources (1986a),” under the apparently truncated title “Interim Procedures,” but their
draft report does not include a bibliography so no additional reference information is provided.
According to personal conversations with Dr. David Moser (1998) at IWR, any changes made to
the Stanford/ FEMA model were made by Lee et al. (1986), and are contained in their report. The
Australian National Committee on Large Dams (1994) supports this assertion when they mention
1986 risk assessment procedures under development at the U.S. Army Corps of Engineers that
fell short of providing a life-loss estimate.

Regardless of the source or nature of these historic model modifications, current practice
within the Corps of Engineers is to estimate Par, but to stop short of making specific loss of life
estimates.” While loss of life is referred to in Corps policy documents, it is completely omitted in
practice.

> The current Corps practice of omitting loss of life calculations was explained at a meeting in Los Angeles
on August 14, 1998. The purpose of the conference was the second-stage of a demonstration risk assessment
involving members of the Los Angeles District, IWR, observers from other Corps offices around the country, and
personnel from Corps headquarters in Washington D.C.
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Brown and Graham: United States Bureau of Reclamation
(Brown and Graham, 1988; U.S. Bureau of Reclamation, 1986, 1989)

The Model

An official presentation of the methods developed within the USBR was published as a
technical memorandum in 1986.° Subsequently, Brown and Graham published “Assessing the
Threat to Life from Dam Failure” in 1988 and the method was formally repeated in 1989 with
the publication of the 1989 interim guidelines, “Policy and Procedures for Dam Safety
Modification Decisionmaking [sic].” Reclamation intentionally “tried to build upon the
Stanford/FEMA model . . . by considering additional factors, and by developing an empirical
basis for model coefficients” (Brown and Graham, 1988, p. 6).

The method presents a five-step procedure: 1) develop inundation maps for each
combination of loading and dam-safety alternatives to quantify Par, 2) estimate corresponding
warning times, 3) apply life-loss equations to generate baseline projections of life loss for each
failure scenario, 4) adjust these baseline estimates using site-specific characteristics, and 5)
compare each scenario’s life-loss estimate to that for the “no action” alternative to produce an
incremental life-loss projection.

In 1989, the incremental comparison was changed from “fix vs. no fix” to “failure vs. no
dam” to reflect the difference between losses given a dam failure and those that would result
were the dam not present at all. To minimize the number of separate failure analyses that are
required, it is recommended that loading conditions and dam-safety alternatives should be
grouped together or combined into a single increment whenever their disparate consequences are
expected to show little difference.

Several things suggest the importance of using local experts to help in the analyses:

1. Accurate estimation of Par in step 1 requires knowledge of dynamic recreational
activities below the dam, fluctuations in Par with time, and other variations not necessarily
captured in census data.

2. Estimates of warning time require not only knowledge of wave travel time but also
the routines of the dam keepers, the nature of the early warning system, possible pitfalls in the
emergency action plan, and the accessibility of subPar for warning notification.

3. Adjustments to the baseline life-loss estimates require subjective judgements based
on local conditions.

The life-loss equations rely on two independent variables: Par and warning time. Par
should be subdivided into subPar whenever warning time is expected to vary significantly with

® Lee et al. (1986) apparently found the same information in a 1985 USBR report, but their bibliography
was never included in their draft document so no further reference information was provided.
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distance. In this way, the river is divided into reaches of varying length based on judgments
about the distribution of Par. For example, a fish hatchery at mile 1, followed by a YMCA camp
at mile 3, a popular fishing reach along miles 7 — 10, and a town at miles 20 through 21 would
suggest four subPar, each with its own warning time.

To account for seasonal or diurnal fluctuations in these subPar, each important time
frame is assigned an average subPar; value (Par;jj) and associated with a P; value representing the
probability that the failure mode will occur during the designated category of time. Notice that
the P, value is not merely the proportion of the year represented by a time category, but
represents the likelihood that the failure will occur during that time category. For example, if
hydrologic failures are more likely during a 3-month summer thunderstorm season, those 3
months will be assigned a P; value greater than 0.25. The weighted Par;; are then the product of
P;*Par;;, where subscript 1 indicates the subPar in question and j identifies the time category in
view.

Warning time (Wt) is the next important variable to quantify. Schematically, the
conceptualization of the inputs to life loss can be presented in a flow chart like Figure 3.2. The
calculation of warning time involves estimating the flood wave travel time to the midpoint of
each Par; and adjusting that value upward or downward based on estimates of whether the breach
is anticipated or detected after its development and the time it takes to warn the Par; after
detection. Together, this entails those parts of Figure 3.2 that lead up to “warning time for Par.”

In determining warning time, it is important to consider the processes of detection,
notification of the proper authorities, decision-making, mobilization, and dissemination of a
public warning on an event-specific basis. Is there a chain of command? Can each link be
reached at a moment’s notice at all times? Does the dam owner have authority/responsibility to
notify the public directly, or must that decision be passed on to local authorities? Is the failure
mode under consideration likely to become evident hours or days prior to actual breach
development? Will communication systems remain functional? Are means available to warn
fishermen, campers, isolated residents, or other members of the Par cut off from mainstream
communication channels?
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Threatening Event Monitoring Systems

U U
Threat Recognition Decision Process
U U
Decision to Warn  Warning Capability
U U
Par Characteristics Warning Time/Characteristics Environmental Conditions
U U U
Par Decision to Evacuate Ease of Evacuation
U U
Convergence Number of Par Evacuated
U U
Par after Evacuation  Flooding Lethality
U U
Flooding Loss of Life

Figure 3.2. Flow chart of variables affecting loss of life (reformatted from U.S. Bureau of
Reclamation, 1989, Figure 1, p. I1I-28).

To calculate the baseline loss of life, each weighted P;*Par;; is entered into one of three
empirical functions, and then the associated estimates of life loss (L;j) are summed together.
Equation BG-1a is for warning times less than 1.5 hr and equation BG-1b is for warning times
greater than 1.5 hr. Equation BG-1c was not originally part of the model, but it was added in
1989 for cases with warning times less than 15 minutes and depths greater than 3 ft. It makes no
difference whether the P;; values (the probability that the failure mode will occur during the
designated category of time and inundate Par;;) are applied to the subPar directly or to the
unadjusted life loss (L;j) results. Hence, the functions are presented here without the P; factors
using the symbols for life loss (LOL) and population at risk (PAR) used by Brown and Graham
(Brown and Graham, 1988; U.S. Bureau of Reclamation, 1989):

Warning < 1.5 hours: LOL, = PAR® (BG-1a)
Warning > 1.5 hours: LOL, = 0.0002 * PAR, (BG-1b)
Warning <15 minutes (depth > 3 ft): LOL, =0.5* PAR, (BG-1c¢)

These relationships were developed by analyzing 23 cases of dam failure or flash flood
that occurred since 1950 in North America or Europe and that were judged to be large-scale
events for which relatively complete documentation was available. The specific events are listed
in Table 3.5. DeKay and McClelland (1993b) added Allegheny County, Pennsylvania; Austin,
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Table 3.5. The data set used by DeKay and McClelland in 1993, estimations using equations
DM-2d, DM-3b, and DM-4 and the root mean square errors of each (includes
material from DeKay and McClelland, 1993b, Table I, p. 197)

Predicted

Loss of

Life Eq.

Hours DM-4 Average
Warning Hours Predicted | Predicted | (Variables | Prediction
(Wt) Warning Actual | Lossof | Lossof | Used By |Eq. DM-2d
Brown & (Wt) Flooding |Loss of| Life Eq. | Life Eq. | Brown & and

Locations Par | Graham |Continuous| Force Life | DM-2d | DM-3b | Graham) |Eq. DM-3b
1 |Allegheny County, PA, 1986 2,200 -] 0 0 9 6 11 109 8
2 |Austin, TX, 1981 1,180 et 1 1 13 9 7 12 8
3 |Baldwin Hills Dam, CA, 1963 16,500 1.5 1.5 1 5 9 6 20 8
4 |Bear Wallow Dam, NC, 1976 8 0.0 0 1 4 5 11 5 8
5 |Big Thompson, CO, 1976 2,500 <1.0 0.5 1 144 59 61 47 60
6 |Black Hills, SD, 1972 (Canyon Lake Dam) 17,000 <1.0 0.5 1 245 174 184 129 179
7 |Buffalo Creek Coal Waste Dam, WV, 1972 5,000 <1.0 0.5 1 125 87 91 67 89
8 |Bushy Hill Pond Dam, CT, 1982 400 2-3 25 0 0 0 0 0 0
9 |Centralia, WA, 1991 150 ---[] 0 0 0 1 2 26 1
10 |D.M.A.D. Dam, UT, 1983 500 1-12 6.5 0 1 0 0 0 0
11 |Denver, CO, 1965 (South Platte River) 10,000 2.33-4 3.17 0 1 1 1 0 1
12 |Kansas City, MO, 1977 2,380 <1.0 0.5 1 20 57 59 45 58
13 |’Kansas River, KS, 1951 58,000 >2.0 3 1 11 0 0 2 0
14 |Kelley Barnes Dam, GA, 1977 250 <0.5 0.25 1 39 31 37 22 34
15 |Laurel Run Dam, PA, 1977 150 0.0 0 1 40 40 63 26 52
16 |Lawn Lake Dam, CO, 1982 5,000/ 0.0-1.0 0.75 0 3 5 9 43 7
17 |Lee Lake Dam, MA, 1968 80 0.0 0 1 2 26 44 19 35
18 |Little Deer Creek Dam, UT, 1963 50 0.0 0 0 1 1 1 14 1
19 |Malpasset Dam, France, 1959 6,000 0.0 0 1 421 406 527 185 467
20 |Mohegan Park Dam, CT, 1963 1,000 0.0 0 0 6 4 7 72 5
21 |Northern NJ, 1984 25,000 >2 3 0 2 2 3 1 2
22 |*Prospect Dam, CO, 1980 100 >5 7.5 0 0 0 0 0 0
23 |Shadyside, OH, 1990 884 - 0 1 24 127 176 67 152
24 |Stava dams, Italy, 1985 300 0.0 0 1 270 64 95 38 79
25 |Swift and [Lower] Two Medicine Dams, MT, 1964 250 <1.5 0.75 1 28 8 7 8 7
26 |Teton Dam, ID, 1976 (Dam through Wilford) 2,000 <l.5 0.75 1 7 25 23 26 24
27 |Teton Dam, ID, 1976 (Rexburg to American Falls) | 23,000 >1.5 2.25 0 4 4 5 6 5
28 |Texas Hill Country, 1978 2,070 <lL.5 0.75 1 25 25 24 27 24
29 |Vega De Tera Dam, Spain, 1959 500 0.0 0 1 150 89 127 50 108
Root Mean Square Error 50 53 76 50

* Not used in equation derivations (omitted as
outliers)

Texas; Shadyside, Ohio; Stava, Italy; and Centralia, Washington.7 Brown and Graham divided
the Teton failure into an upper and lower subPar. They considered the upper Teton subPar and
Lawn Lake to be outliers and omitted them from their data set.

The authors treated warning time dichotomously and then trichotomously because they
did not believe that warning time could be estimated with sufficient accuracy to justify a
continuous treatment. In both the dichotomous and trichotomous approaches, the cutoffs in
warning time were not based on rigorous statistical analyses, but rather on what appeared to be

reasonable divisions of the data set.

" Teton Dam failure was divided into 2 subPar.

28




According to Brown and Graham, equation BG-1a has an R” value of 0.6, indicating that
as warning time decreases, other factors besides the size of Par and length of warning time
influence life loss. For greater warning times, equation BG-1b has a reported R? value of 0.87,
indicating a decreasing influence by other factors. The exponential nature of the first curve
suggests that there are aspects of larger population centers (advantages in terms of warning
dissemination and public safety resources, for example) that decrease the proportion of lives lost
when warning time is less than 1.5 hr. Beyond 1.5 hr and when warning times are less than 15
minutes, these advantages disappear because evacuation either nears completion or has
insufficient time to progress.

The baseline estimates of life loss are meant only to represent a first cut. Central to the
USBR method is the subjective adjustment of these values for each Par;; based on the remaining
elements in the flow chart of Figure 3.2. A summary of each chart heading subsequent to
warning time follows. The reader is referred to the source documents for more details.

1. Warning characteristics: Warning time is defined globally as the elapsed time
between initiation of a public warning within Par; and the onset of flooding at that Par;. Warning
characteristics go further to describe the rate, extent, and believability/urgency of the warning
dissemination.

2. Par characteristics include descriptors such as age, mobility, prior awareness,
experience, knowledge of how to respond, information networks, degree of family dispersion,
attitudes, and prior false alarms or misinformation.

3. Environmental conditions are local conditions such as heavy rain, darkness,
earthquake damage or the like.

4. Par decision to evacuate refers to the public response.

5. Ease of evacuation is the combined effect of environmental conditions, distance to
safety, availability of transportation, and the likelihood that bridges or bottlenecks will become
impassable.

6. Number of Par evacuated are those who escape prior to the arrival of the flood.

7. Convergence is the movement of people into the flood zone, including safety
officials, curiosity seekers, and those who return to help others or retrieve belongings.
Convergence-related deaths are usually few in number, but are not uncommon.

8. Par after evacuation quantifies the number present when the floodwaters arrive,
either due to convergence or to evacuation shortcomings.

9. Flood lethality is the potential of a flood to cause deaths, based on its depth,
velocity, temperature, and debris load.

Adjustments to the baseline loss of life figures based on these additional considerations
are left to the judgment of the analyst. However, the analyst should “lower the fatality estimates
substantially if the floodwaters will be less than two feet deep and moving at less than three feet
per second” (Brown and Graham, 1988, p. 15). At the other extreme, estimates should be raised
to as high as a 90% fatality rate if warning time is near zero (less than 5 minutes) and the flood
wave will destroy virtually every structure in the flood plain.

In all cases, the results are presented as a range of likely outcomes. When no dominant
variable suggests the direction in which a baseline estimate should be adjusted, the baseline
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estimate is taken as the expected value, and a high and low estimate are predicted based on the
95% confidence interval for each equation. For equation BG-1a, the confidence limits are found
by changing the exponent to 0.5 and 0.7. For equation BG-1b, the coefficient is changed to
0.00014 and 0.00022. Brown and Graham do not suggest confidence limits for equation BG-1c
(U.S. Bureau of Reclamation, 1989).

When one or more critical variables can be identified and significant uncertainty
surrounds the variable(s), high and low estimates are derived based on selecting high and low
estimates of each variable and performing a sensitivity analysis. When estimates of life loss
appear to be extremely high or low, a most likely estimate can be displayed along with historic
minimums and maximums from the data set for those cases which most closely resemble the one
in question.

Contributions

There are many strengths to the USBR method. To begin with, it attempts an empirical
calibration based on historic failure events. In this process, there is recognition that the historic
cases are heavily influenced by factors beyond warning time and Par alone, creating a large
variance about the expected values generated by the regression functions. Rather than claiming
more confidence in the baseline estimates than is warranted, the method seeks to make
reasonable adjustments to these estimates based on a case-specific consideration of other
variables. Even then, the results are displayed as ranges or envelopes, rather than a single value,
thus reducing any bias introduced by individual analysts. Perhaps the greatest strengths are the
identification of pertinent factors that had previously been overlooked and the accrual of a data
set upon which future work could be built.

Shortcomings

There are at least six shortcomings to the USBR method. First, although recognizing that
warning time is critically important, the trichotomous treatment severely limits the precision with
which loss of life can be explored.

Second, the regression equations themselves lack sophistication. For example, it would
be desirable to refine equation BG-1a by including a multiplicative coefficient, and equation BG[
Ic appears to be an “eyeball” estimate based on very few data points with no formal statistical
analysis. The use of round numbers for both coefficients and exponents makes it clear the
estimates are not intended to be precise, although this is not unreasonable given the large
variance in life loss, and given that the equations are intended only to yield a first-cut estimate.

Third, there is some question as to the basis for the reported R? value for equation BG-1a.
A visual perusal of the graphs in the source documents might leave some readers feeling uneasy.
Feeling uneasy themselves, another group within the USBR attempted to duplicate the results to
test the accuracy of the R? value. According to the internal memorandum, using the same data
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and excluding the same outliers, they generated the following refined equation with an R? value
of only 0.47 (Hyatt, 1985):

LOL =0.51* PAR** (BG-2)

They suggested that perhaps the reported value was an R value instead of R?, or was based on a
transformed variable, rather than L itself. In any case, even the reported R” value of 0.6 presents
an incentive to this researcher to develop a more refined function.

Fourth, while the equations are meant to be applied on a subPar basis, the only historic
case that was subdivided was the Teton Dam failure, and then one of the two subPar was omitted
as an outlier. This raises questions regarding whether the sum of the parts of an analysis is the
same as a single application to the whole. In the case of equation BG-1a, this is clearly not the
case, since the life-loss relationship to Par is not linear.

Fifth, the data set, while an excellent beginning, is noticeably small—especially after it is
subdivided to form two or three distinct data sets for two or three different equations. As this set
is appropriately expanded, it should generate more confidence in any resulting regression
equations. Significantly, the USBR practice was to use the subsequent relationship developed by
DeKay and McClelland (1991, 1993b) until recently, when another approach was developed by
Graham (1999). Supported by USBR funding, DeKay and McClelland (1991, 1993b) advanced
Reclamation’s work by expanding the data set and applying a more rigorous approach to
regression analysis. Graham himself recommends the use of the DeKay-McClelland equation
over the ones he helped develop, although he also recommends going beyond Dekay-McClelland
and is actively developing new procedures (Graham, 1998, 1999).

Sixth, the use of weighted Par;; should only be adopted if estimated life loss is linearly
related to Par, which, for equation BG-1a, it is not.

A final comment bears mentioning that applies to any approach that seeks a mean
estimate of annualized life loss rather than a probability distribution of life loss: The model
yields only a point estimate of an average value that is itself uncertain and subject to confidence
limits. Also, if estimated life loss (lives) is needed, as is the case if societal risk is to be
characterized using charts that relate the frequency of events to the number of lives lost (F-N
curves), then weighted Par;; should not be used.
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Lee and Others for the Institute of Water Resources,
U.S. Army Corps of Engineers, 1986

The Models

Lee et al. (1986) at the Oak Ridge National Laboratory, U.S. Department of Energy,
prepared three methods for predicting loss of life from floods. Their focus included flash floods
and dam failures, but was not limited to catastrophic events. The authors compiled additional
information shedding light on the mechanisms resulting in life loss. For example, summarizing a
variety of studies, they suggested the following circumstances for life loss:

being trapped in a structure by rising water

being swept out of a structure

being in a structure that fails

attempting to cross flood waters

being caught in flood water while in the floodplain

attempting to rescue others in flood waters

attempting to drive across a flood-way

attempting to boat or raft on flood waters. (Lee et al., 1986, p. 11, capitalization
omitted)

PN R

To these were added four reasons people drown: the flood stage is life-threatening, people
receive inadequate warning time, they respond too slowly, or they do the wrong thing.

In addition to their three models, Lee et al. also extended the USBR model, though their
extension does not appear to have been adopted (or even recognized) within the USBR.
Reintroducing the outliers Brown and Graham (U.S. Bureau of Reclamation, 1986) excluded
from their data set (Lawn Lake and Upper Teton), they estimated the case-study warning times to
the nearest 15 minutes instead of dichotomously. Where insufficient data existed to estimate
these directly, they set “less than 1.0 hour” to 45 minutes and “more than 1.5 hours” to 75
minutes. The reason for reducing the values greater than 90 minutes to 75 minutes is not
explained. Formulating a new approach to regression, they generated the following equation
(symbols used in this text have been substituted for those used by Lee et al. (1986), as noted
below):

log(L) =0.67log(Par) — 0.014(Wt) (L-1a)
which reduces to

[ = o067 l0(Par)~0.014(71) (L-1b)
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where L =life loss
Par = population at risk (Lee at al. used P for Par), and
Wt = warning time (Lee et al. used W for Wt).
This equation has an adjusted R? value of 0.89, which is significant at less than the 0.0001 level.

For their own regression equation, Lee et al. assembled a new data set consisting of 47
floods, most of which resulted in loss of life, and all of which occurred in the United States
between 1963 and 1985. When consistent with these selection criteria, cases from the USBR data
set were included. Their approach was to compile a list of factors that might affect either the size
of the threatened population (those remaining in the flood zone when the flood arrives) or the
lethality of the flood; record these along with data on life loss and Par for the aforementioned
floods; identify general trends, outliers, and lack of data within the data set; formulate alternative
life-loss equations and calibrate them to the data; analyze each equation statistically to select the
best one; and compare the results with those for the Brown and Graham (U.S. Bureau of
Reclamation, 1986) equations and the IWR adaptation of the Stanford/ FEMA model (Lee et al.,
1986).

As expressed using the symbols chosen by Lee et al., the form of the equations was
limited in each case to

L.

L= p(xi,p,) (L-2)

N

=

where the subscripts refer to reach i1 and flood zone j after the two-part division of subPar in the
Stanford/FEMA model,

L =loss of life,
P = population at risk (herein uses Par for P),

p = the probability of life loss of an individual in reach i and flood zone j, which is a
function of vectors xand y,

x = a vector of variables affecting the ratio of deaths to the threatened population ()_c =a
bold x in Lee et al., 1986), and

y = avector of variables affecting the size of the threatened population relative to the

population at risk, P (; = abold y in Lee et al., 1986).

This equation is an adaptation of the Stanford/FEMA equation

33



L.
Li=§d)*r*F or  h=gd)*, (SF-1a)

i

in which the variables ¢(d;)*r; are replaced by an individual probability of survival, p, and
subdivision by both reach (i) and zone (j) are made explicit.

The variables considered for vector x were:

number of residences damaged and the extent of economic damages

depth of the flood (data available for only about half of cases)

velocity of the flood wave (data generally unavailable)

discharge (cfs; data available for about half of cases)

breach of dam (1 = breach, 0 = no breach)

topography of the inundation area (1 = wider floodplain, 0 = narrow canyon)
special characteristics of the Par, such as very young or old

unique facilities: hospitals, retirement homes, schools, recreation areas, etc.
9. type of structures (data unavailable, not used)

10. number of roads and bridges crossing the river in the inundated area (data
unavailable, not used)

XN R

The variables considered for vector y were:

warning time

1. experience or knowledge of flooding in the local area within 10 years (1 =yes, 0 =
no)

2. existence of hospitals, retirement homes, schools, recreation areas or other unique

facilities (each dichotomous, 1 = existence of such a facility, 0 = not present)

3. day or night (1 = day, 0 = night)

4. time of day

5. proportion of elderly and young (data unavailable, not used)

6. effectiveness of the evacuation plan and system (coded after Sorensen and Neal in
Lee et al. (1986) as needs improvement, fair, or good)

7. evacuation traffic (data unavailable, not used)

8. size of population

9. urban vs. rural situations

After preliminary analyses, only six variables were found to be statistically significant at
the 0.05 level when regressed individually against life loss (L) and in stepwise refinements: L,
Par, warning time; and dummy variables indicating previous experience with flooding within the
last 10 years, whether or not the area was urbanized, and the depth of flooding at peak stage. Lee
et al. suggested several reasons why the others were not found significant: the sample was small;
the variables affected L, but not sufficiently to be significant when dummy coded and used apart
from the more dominant variables; multicolinearity may have hidden their affect when used in
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stepwise regression analysis with the dominant variables; and a variable sometimes had a
significant impact on one case, but not on the cases as a whole.

Using these six remaining variables and experimenting with many different approaches,
Lee et al. developed two regression equations, each based on a logistic (also called logit)
equation.

In general, the logit relationship can be expressed as follows:

= exp(/s )_ = : _ where In| -2 |= Z’ (L-3a and L-3b)
I+exp(f) 1+exp(=p4) l1-p
where p = a fraction between 0 and 1.0 (notice the use of lower case p here rather than upper

case P used by Lee et al. to represent Par), and

£ = a function of zero or more variables, their transformations and their coefficients,

including a possible constant. This is sometimes designated by E’; In the text,

the function’s constant will be represented by [3y, the subsequent coefficients
sequentially by f3; and the entire function will be indicated by B in bold type.

Equations L-3a and L-3b are equivalent following manipulation; the left side of equation
L-3b is called the logit transformation, while the middle and right side of equation L-3a are
equivalent expressions for the inverse transformation, yielding the value of the proportion p
directly.

The logit transformation is used most often when p represents the probability that an
individual outcome will be a “success” during independent trials of a binomial experiment
(Agresti, 1996). In the treatment by Lee et al., p was defined as life loss divided by population at
risk. Using symbols in Lee et al., this would be p = L/P. Using symbols advocated in this report,
p is designated with an upper case P such that P = L/Par. For Lee et al., p represents the
probability that an individual at risk dies given the conditions defined by the function B. Put
another way, p is the proportion of lives that would be lost in a given flood if each life were an
independent Bernoulli trial.

The two equations making the final cut are quite similar, except that the first omits
urbanization as a dummy-coded variable and the second omits depth. The reason depth was not
included in the second regression is that only 22 out of 47 cases in the data set provided
sufficient information upon which a regression could be performed. Equation L-4 proved to be
the equation Lee et al. recommended for use out of the two, in part because of the intuitive value
of including a description of the flood, and in part because it slightly outperformed equation L-5
when applied to the data set in a semi-Bayesian manner (see below). Notice that these two
equations fulfill the requirements of equation SF-1a, as desired.
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exps—6.2+3. 1[ } —0.00034(Wt* P)** —0.0077P°° +1.4E +0.0039D
£ _ 1+ Wt (L-4)

1+ exp{— 6.2+ 3.1{ } —0.00034(Wt * P)** —0.0077P* +1.4E +0.0039D

1+ Wt

exp{— 0.18+ 1'7[11\?\/‘(} —0.00044(Wt*P)** —0.0092P°° + 0.26E — 0.1 SU}
+

(L-5)

1+ exp{— 0.18+1 7[11\)\/‘[} —0.00044(Wt *P)** —0.0092P"° + 0.26E — 0.18U
+

where L = loss of life
P = Par
Wt = warning time in minutes (Lee et al. used W)
E = experience with floods in the last 10 years (1 = yes; 0 = no)

D = depth of flooding at peak stage (feet above flood stage)

U = denotes an urbanized area (1 = urban area with pop. > 10,000; 0 =
otherwise)

As with any treatment of historical data, the model-developers were forced to quantify
many variables using “a considerable degree of subjective judgement” (Lee et al., 1986, p. 51).
Like the regression by Brown and Graham, only the Teton Dam failure was divided into subPar,
although it was intended that subPar be used in application. The model coefficients were
determined using maximum likelithood methods. The corresponding t-statistics and levels of
significance for each coefficient are presented in Table 3.6.

The implications of using a logit transformation will be explored in detail in Chapter [V
when critiquing the approach developed by DeKay and McClelland (1991, 1993b). A few
observations will be sufficient at this point.

First, the logit transformation has the reasonable characteristic of restricting the
proportion of life loss to values between 0.0 and 1.0. In contrast, using L. or p = L/P directly in a
regular least-squares regression without the transformation of L/P or  would permit values of
life loss to exceed the Par or drop below zero in extreme cases.
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Second, Lee et al. treated the individual as the fundamental dependent variable,
effectively increasing the number of observations from 47 floods to 459,234 members of Par.
This has two dangers that were pointed out by DeKay and McClelland (1991). By

Table 3.6. Regression t-statistics and levels of significance for the coefficients in equations L-4
and L-5 (Lee et al., 1986, p. 58 — 60)

Variable Equation L-4 Equation L-5
Coefficients in Level of Level of
Sequence t-Statistic Significance t-Statistic Significance
Bo -31.5 0.0000 -1.8 0.0624
B 20.7 0.0000 15.3 0.0000
B, -6.6 0.0000 -8.3 0.0000
B3 -7.4 0.0000 -10.6 0.0000
B4 9.9 0.0000 32 0.0014
Bs 2.6 0.0099 -1.86 0.0624

increasing the sample size in this manner, it increases the power of the statistical tests, allowing
statistical significance to be discovered for variables that have very little real-world impact. More
fundamentally, such an analysis presumes independence and Bernoulli similarity for each
individual encountering a large-scale flood event. Clearly this is not true, as the threat to life
posed by a flood varies dramatically with space, time, the event, and the individuals involved.
Fatalities are often clustered in a way that defies independence. On a practical level, the
proportion of lives lost in events involving large Par will statistically dominate the proportion of
lives lost in events threatening small Par.

The fact that each individual is treated as a statistical observation means that past flood
events with greater populations at risk are statistically more important when estimating the
empirical function than flood events in which there were few people at risk. Computationally,
each individual, rather than each flood event, would carry equal statistical weight. (Lee et al.,
1986, p. 61)

Lee et al. see this as a benefit, since every individual is treated equally. DeKay and
McClelland (1993b), however, rightly point out that we are not distinguishing between
individuals but between the unique mix of variable values that define each event. The event
offers the critical information for evaluation, not each individual. Furthermore, it is important to
accurately predict life loss (L) in events involving both large and small Par.

The implications of equations L-4 and L-5 are similar to those for the USBR
formulations: L is nonlinear with respect to Par, L decreases with increasing warning time, and
the influence yielded by the magnitude of Par decreases as warning time increases. Statistically,
warning time is the most significant factor affecting L. Advancing the USBR method, several
considerations which were used to adjust Brown and Graham’s baseline estimates have been
formally incorporated into the equations: prior flood experience within 10 years can retard a
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community’s response during evacuation due to overconfidence; the greater the urbanization, the
more efficient the warning and evacuation procedures; and the deeper (more lethal) the flood
waters, the greater the loss of life. Interestingly, urbanization was not found significant when
depth of flooding was included.

Lee et al. (1986) applied both of their equations to their data set, along with the USBR
best estimate and upper and lower bounds, and the IWR version of the Stanford/FEMA model.
This has been duplicated in full in Table 3.7 since it demonstrates the performance of each
approach, and it identifies the complete data set under question. Though Lee et al. did not
include a list of sources cited, they did include an appendix listing sources for every case in this
data set.

In all fairness, several biases should be pointed out regarding the values reported above.
First, only two of the three USBR equations were available to Lee et al. in 1986 and no
subjective adjustments were applied, so the estimates represent only a first cut. Likewise, the
Stanford/ FEMA/IWR estimates were produced using the unadjusted tables provided with that
model. Second, equation L-4 cannot be applied directly to 25 of the cases since they were
missing adequate information on depth. For these, Lee et al. arbitrarily assigned the mean depth
found by averaging the depth over the 22 cases that could be quantified. For equation L-5, in
those cases where data were unavailable to dummy code the degree of urbanization, the equation
was applied sequentially using a 1 and a 0 and then averaging the two results. Finally, since
equations L-4 and L-5 were developed from this identical data set, they would be expected to
show a reasonably good fit; if the USBR data set were used for testing instead, or an
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Table 3.7. Comparison of loss of life predictions as calculated by Lee et al. using their own data
set (Lee et al., 1986, p. 68; column headings have been modified, their order has
changed, and the final row represents a calculation of the RMSE based on the data
presented here and found in Lee’s report)

Lee et Lee et USBR USBR Stanford

al. Eq. al. Eq. Lower USBR Upper /FEMA

# Location Actual L L-4 L-5 95% Expected 95% (IWR)
1 | Teton (to Wilford) 7 3 15 45 96 205 1360
2 | Teton (Rex-Amer Falls) 4 10 34 3 5 5 3910
3 | Gainesville, AL 5 2 7 0 0 0 2
4 | Jackson, MS 4 10 27 3 5 6 43
5 | Buffalo Creek, WV 139 120 142 63 145 332 3400
6 | Big Thompson, CO 139 4 18 50 109 239 1700
7 | San Francisco, CA 9 47 43 173 486 1361 6375
8 | Little Deer Creek, UT 1 2 3 7 10 15 43
9 | Pike Co, KY 3 38 18 16 27 48 213
10 | Toccoa Falls, GA 38 38 18 16 27 48 213
11 | Austin, TX 13 16 21 55 122 272 128
12 | Bear Wallow, NC 4 0 0 2 2 3 3
13 | SW Virginia 4 2 8 0 0 0 68
14 | Cheyenne, WY 11 0 2 14 24 41 68
15 | Hill Country, TX 27 8 13 0 0 0 5
16 | Big Country, TX 6 2 8 0 0 0 3
17 | Mohegan Park, CT 6 1 4 0 0 0 2
18 | Denver, CO 6 37 35 3 4 5 37
19 | Millard Co, UT 1 1 4 0 0 0 2
20 | Schuylkill River Basin 5 14 13 1 2 2 0
21 | Potomac River, D.C. area 27 8 11 0 0 0 0
22 | Wilkes Barre, PA 1 3 1 14 20 22 0
23 | Harrisburg, PA 1 29 33 1 2 2 17
24 | Johnstown, PA 85 49 39 224 660 1947 | 17000
25 | S. California 18 10 11 1 1 1 0
26 | Santa Barbara, CA 20 3 5 0 0 0 0
27 | S. California 18 28 33 1 2 2 12
28 | Kansas City, KC, MO 12 6 22 71 166 388 750
29 | Old Creek Canyon, AZ 3 4 7 22 42 77 340
30 | Phoenix, AZ 10 18 23 1 1 1 0
31 | Tri-County area, PA 9 8 14 0 0 0 4
32 | Connecticut Flood, CT 11 17 26 1 1 1 102
33 | Baldwin Hills Dam, CA 5 9 30 2 3 4 140
34 | Honolulu 4 7 9 32 63 126 213
35 | Four Mile Run (Fairfax), VA 1 4 5 22 42 77 106
36 | Tekamah Creek, NE 3 16 25 55 122 272 255
37 | North Hills, PA 8 33 38 100 251 631 2125
38 | Black Hills (Rapid City), SD 245 37 39 2 3 4 2040
39 | Tonto Creek, AZ 23 9 13 39 80 167 319
40 | James River, VA 5 9 4 7 10 11 0
41 | Brushy Hill Pond, CT 0 1 4 0 0 0 10
42 | Lawn Lake, CO 3 21 31 1 1 1 850
43 | Northern New Jersey 2 18 13 3 5 6 0

Table 3.7 Continued
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Lee et Lee et USBR USBR Stanford

al. Eq. al. Eq. Lower USBR Upper /FEMA

# Location Actual L L-4 L-5 95% Expected 95% (IWR)
44 | Phoenix, AZ 0 22 27 1 1 1 10
45 | Harrison Co, WV 2 12 19 45 96 205 170
46 | Lee Lake, MA 2 0 1 9 14 21 7
47 | El Dorado, NV 9 16 7 10 16 25 85
Root Mean Square Error — 22 25 47 133 374 2810
RMSE using data in table 39 39 55 127 363 2792

entirely new data set, a different equation might prove the better predictor. Significantly, the
USBR equations were developed specifically for dam failures and flash floods that closely
imitate dam failures; the types of flooding included by Lee et al. are broader, restricted to floods
that are life-threatening but not necessarily localized or resembling a dam failure.

The final row is the root mean square error (RMSE) calculated using the data presented
in the report by Lee et al. and duplicated in Table 3.7. The likely explanation for the difference
between the calculated values and those reported by the authors in the preceding row is that Lee
et al. inadvertently misreported one or more values. Notice, for example, that cases 9 and 10
(Pike County and Toccoa Falls) give identical estimates for every method, despite the large
contrast in actual life-loss values. In any case, the relative magnitudes remain unchanged: those
reported by Lee et al. will be presumed to be the correct RMSEs.

With these caveats, the RMSEs indicate that equations L-4 and L-5 make comparable
predictors and both surpass the performance of the USBR equations and the
Stanford/FEMA/IWR model. Interestingly, the lower bound of the USBR confidence interval
made a far better predictor than the best estimate, indicating a tendency to vastly overestimate L
in some cases. Without question, the Stanford/ FEMA/IWR model is miscalibrated, allowing
overestimation by up to three orders of magnitude.

Despite the relatively low root mean square errors, Lee et al. point out shortcomings of
their own estimations. The variance in L from their equations (c = 20) was much less than for
the actual case histories (¢ = 45). In their words,

Loss of life in many of the more lethal floods, such as the Big Thompson,
Colorado flood; the Johnstown, Pennsylvania flood; and the Black Hills, South
Dakota flood, was significantly under-predicted by the empirical function . ... On
the other hand, the empirical function over-predicted some of the less lethal
floods such as those in Denver, Colorado; Harrisburg, Pennsylvania; North Hills,
Pennsylvania; Lawn Lake, Colorado; Northern New Jersey; and Phoenix,
Arizona. (Lee et al., 1986, p. 71, semicolons have been added for clarity)

To these could be added several more cases of dramatic overestimation, such as San
Francisco, California; Pike County, Kentucky; and Tekamah Creek, Nebraska. These were
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balanced by 4 cases where actual life loss was in the twenties while the estimated life loss was
less than 10.

Significantly, a similar pattern emerges to that found using the logit procedure developed
by DeKay and McClelland (1993b): persistent overestimation when actual loss of life is less than
10, a balance of over- and underestimation in the midranges of life loss (10 to 40) and persistent
and dramatic underestimation when L is high. There are reasons for this built into the logit
transformation itself, as will be explored in Chapter I'V.

Finally, Lee et al. proposed three models for calculating L, two of which depend on
equation L-4 or L-5, with L-4 being recommended. To support these models, they provided
detailed guidance on how to model the flood waves and calculate Par, Warning time, flood
depths, and the other variables used in the model. Going beyond previous guidance, they also
explored evacuation modeling. An overview summary looks like this,

receipt of evacuation warning = mobilization time = vehicular travel time and
queuing delay time = time between clearance and hazard arrival

where the middle two components comprise clearance time.

The Aggregate-Empirical Model

The simplest model is the aggregate-empirical model. By way of overview, it entails:

1. Establishing flood inundation scenarios using DAMBRK;

2. Relating these to census tracts, enumeration districts, or data on individual blocks;

3. Calculating a weighted average flood depth for each reach based on the proportion of
Par inhabiting each flood stage within that reach (using automated software, if possible);
4. Estimating warning time by using a rough estimate or by summing the times for
hazard detection, hazard appraisal, threat determination, notification of officials, decision
to warn, and completion of the first warning; and then using this sum to adjust the wave
travel time (the difference in time between the peak stage at the dam and the peak stage at
the centroid of the population distribution);

5. Estimating the remaining variables in equation L-4 or L-5; and

6. Applying the loss of life function of choice (either L-4 or L-5).

The distinguishing characteristics of this model are that Par is subdivided only to the level of

sequential reaches along the river and variables are applied to each reach as a whole, weighted
according to the population distribution within each reach.
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The Empirical-Flood-Travel Model

The empirical-flood-travel model distinguishes Par; more finely by identifying separate
inundation zones within each reach based on five land elevations and defining the model
variables uniquely for each. This is consistent with the divisions used in the Stanford/ FEMA
model. Note that unless the flood wave rises rapidly, each zone will have a different warning
time. To facilitate this more detailed analysis, the model anticipated software that had not yet
been written. To this author’s knowledge, the software was never developed.

The Flood-Travel-Evacuation Model

The flood-travel-evacuation model also depends on proposed software. Unlike the
previous approaches, this model explicitly considers evacuation rates and avoids use of the
empirical life-loss equation. Instead, zones are identified by choosing representative cross
sections within each reach and plotting their elevations. By outputting flood hydrographs at each
cross section, the flood wave travel time to each zone can be determined for each reach. The
elevation and location of each road link and origin node must also be determined by manually
inspecting topographic maps. This transportation grid is entered into a traffic simulation network
database, in particular the MASSVAC?2 traffic evacuation simulation model. Next, the traffic
simulation program is run for a short increment, say 15 minutes. Checking each hydrograph for
each cross section and each zone, any roads which lie below the levels of inundated at that point
in time are closed. With these closures, the traffic model is again run on an incremental basis,
and the hydrographs are again checked for additional road closures. This continues until the
evacuated population reaches some asymptote, implying that, due to flooding, no more
individuals can escape. Some will have been trapped at the origin nodes while others will have
become blocked en route. Those who remain in the flooded zones as they are inundated
constitute the threatened population. Life loss is estimated subjectively by multiplying this
threatened population by a reasonable fractional coefficient. The flood event in question is then
compared to a reference flood to determine the incremental losses.

Since considerable guidance is provided by the authors for each of these models, the
interested reader is referred to their report for more details. It is important to remember, however,
that Lee et al. did not propose a single model, but three models, two of which required additional
software development and one of which was independent of their regression equations.

Contributions

Overall, their contribution to the field of dam safety life-loss estimation was monumental,
being solidly built on the pioneering works by McCann et al. (1985) and Brown and Graham
(1988). They completed the most rigorous statistical analysis of empirical evidence to date and
introduced the less commonly understood approach of using a logit transformation. They
attempted to explore Par on a scale small enough to be easily understood and to which values of
characterizing variables would apply with reasonable accuracy. It is likely that their method did
not gain prominence primarily because it depended on undeveloped software.
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Shortcomings

Despite their pioneering work, the models developed by Lee et al. (1986) had a number
of shortcomings:

1. They treated the individual as the unit for regression, causing events with large
populations to dominate the results.

2. Some of the floods in their database were slow-rising, widely dispersed events,
atypical of dam failures, although these may be useful for estimating incremental life loss
by comparing the life loss from a dam failure to the life loss from non-failure flooding.
3. Current definitions of warning time do not describe the average warning time, the
extent to which a warning is propagated, the effectiveness of the message at mobilizing a
timely evacuation, informal types of warnings like sensory clues and shouts from
neighbors, the time required to evacuate, or the excess evacuation time above the time
required to evacuate. As such, it is a point estimate that says little about a particular
event.

4. Since the events were treated globally, and since the equations are nonlinear with
respect to population, estimates of life loss will be different when summed over
subpopulations and will depend on how the global population is divided.

5. The equations can misestimate by a large margin, even within the original data set.
6. The equations have a built in bias to underestimate when loss of life is large and to
overestimate when loss of life is small (see Chapter IV).

Department of Water Affairs,

Natal, South Africa, 1988

This committee report summarized an investigation into the damage from dam breaches
caused by September 1987 floods. The goal was to enable predictions regarding the probability,
magnitude, damages, and life loss of a future dam failure. Among private dams, those breached
included 199 shorter than 5 m and 187 taller than 5 m. Another 449 dams were damaged.
Apparently, 11 breached dams and 15 damaged dams were selected as a sample to survey.
“Surprisingly, no significant downstream damage or loss of life was caused by any of the
breached dams observed” (Jordaan et al., 1988, p.25). The report concludes:

The damage to be expected due to the breaching of farm earth dams, caused by
flooding, up to 12 meters high is negligible and no loss of life can be expected. There
can, however, expected to be sic a potential for significant damage and loss of life for a
medium sized dam for the flood conditions like those encountered here. (Jordaan et al.,
1988, p. 30)
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In light of the small sample examined, the report concluded that the remaining cases should be
reviewed when resources became available in order to form a probabilistic model for potential
loss of life and damage from the failure of small dams.

Abt and Others, 1989

The Toppling Experiment

Though not strictly an effort to quantify life loss, the team of Abt, Wittler, Taylor, and
Love (Abt et al., 1989) sought to define the envelope of depth*velocity relationships (called
product numbers) that would topple individuals overrun by floodwaters. Since feeble individuals
could not be safely tested in a flume, the lower curve of the envelope was defined using a cross-
shaped, 5 ft tall, 117.5 1b, rigid-body monolith constructed of concrete-coated Styrofoam. The
rectangular base was 1 ft wide and 6 in. thick, and it was placed broad-side into the current.

The upper limits and body of the envelope were defined using 20 test subjects, all
healthy, ranging in age from 90 to 201 1b, in height from 5 to 6 ft, and in age from 19 to 54.
Fifteen subjects were under 31 years old and only two were female. No subjects wore loose
clothing likely to trap the current.

A recirculating flume was fitted with four surfaces: simulated turf, smooth concrete,
steel, and a mixture of sand and pea gravel. Subjects were secured in the flume with a safety
harness attached to a hoist. They were allowed to first acclimate themselves in flows of 2 to 3
feet and a depth*velocity product number of about 6. The flows were then gradually increased
while the subjects periodically tried to walk upstream, face downstream, or walk crosscurrent.
When they indicated a loss of stability, the experiment was terminated and repeated within 1 to 2
hours.

Conclusions, insights. and shortcomings

A wide range of product numbers defined individuals’ tolerance limits: low of 7.56 and
high of 22.84 for healthy adults; low of 2.32 and high of 4.21 for the monolith. Testing for a
range was complicated by the fact that an infinite number of depth*velocity combinations are
possible. Several conclusions from the study are presented here, along with commentary.

1. Stability was not found to be a function of surface type for the four surfaces tested,
but several surfaces common to floodplains and rivers were not tested: slippery clay, tall
field grass, uneven surfaces, deep mud which either traps the foot or disintegrates on
contact, river cobbles or boulders, or slippery coatings like moss and algae.

2. Even in a controlled laboratory experiment, human stability in flood settings is
difficult to quantify. The results from one individual to the next varied tremendously.
Nevertheless, among the 20 subjects tested, there was a general trend toward larger
individuals withstanding higher product numbers than those who were smaller. In an
attempt to quantify this, the following regression equation was proposed:
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P.N. = {exp[0.222(wt * ht/1000) +1.088]}

where wt = weight and
ht = height.

However, the R” value was only 0.48, indicating that the relationship explains less than
half of the observed variability. There was even substantial variation when a given subject was
tested two to four times within 2 hr, something the proposed equation cannot explain without
considering factors such as fatigue, practice, and random moments of imbalance. As a broad
generalization, it is safe to say that most subjects lost stability when flows were 4 to 5.5 fps while
depths were 2.75 to 3.5 ft deep (hip deep to mid-abdomen). Higher velocities toppled individuals
at lower depths—Iess than 2 ft for flows over 8 fps—and almost half lost stability in waist-deep
water moving at 3 mph® or less, the speed of a leisurely walk.

3. Project bias was substantial. Seven areas were identified by the original authors.
They are summarized here along with additional commentary.
a) Subjects were willing to take higher risks in light of the safety harness.

b) Practice improved performance.
c) Fatigue may have negatively impacted subsequent tests.

d) The tests did not simulate debris flows or poor lighting. Floods rich in mud
would prove much denser, increasing the flood’s momentum and increasing the subjects’
buoyancy. Large floating debris can readily knock waders into the current.

e) Subjects carried nothing and tended to splay their arms wide for balance as
water depths rose. An adult carrying a child might not perform nearly as well. Even if the
adult did not fall, the child might be washed away by depth/velocities less than needed
for toppling.

f)  All tests involved water temperatures of 68 — 78°F. Performance would likely
drop quickly in winter temperatures.

g) All subjects were in good health, and most were near the age of their athletic
prime. Additionally, only two subjects were women, one of which scored the lowest
product number. No subjects wore clothes likely to billow.

h) The study did not test stability for those of very short stature, especially
children.

%3 mph = 4.4 fps.
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Overall, it seems reasonable to conclude that this study more closely represented the
outer envelope of human stability for average-sized adults than the middle. While the adrenaline
that would accompany a real flood could improve performance, it is likely that the
accompanying mud, debris, uneven ground, uncertain lighting, extra burdens, greater distances,
and other handicaps would more than offset this effect for many individuals.

It bears repeating that this study was not intended to directly suggest conditions that
would lead to loss of life, but rather the conditions that would make a flood potentially
dangerous. There are numerous examples of people being swept downstream, clinging to trees,
climbing upon houses or floating propane tanks, or otherwise being swept some distance without
perishing. On the flip side, if one is swept under branches, caught in a deep eddy, or trapped in
some other manner, even an otherwise slow and shallow flow can turn deadly.

Perhaps it is safe to say that, as a rule of thumb, a flow should not be considered life-
threatening to most adults until it exceeds 2 ft deep and moves faster than a slow walk. For those
of low mobility, such as the elderly, however, even this could prove dangerous: the monolith
toppled in flows just under 2 ft deep when velocities ranged from 1 fps to about 2 fps. Also, none
of this is meant to imply safe flows for automobile crossings—a leading hazard in flash floods.

DeKay and McClelland for the United States

Bureau of Reclamation, 1991, 1993b

The Model

Under funding by the United States Bureau of Reclamation, DeKay and McClelland’
(1991) added the failure of Stava Dam in Italy to Brown and Graham’s (1988) data set and
attempted a more rigorous regression analysis similar to that employed by Lee et al. (1986). The
equation they developed in 1991 for life loss was merely one component of a broader goal:
determining when dam failure warnings should be issued to minimize costs when a “reasonable”
dollar value is assigned to human lives (DeKay and McClelland, 1991, p. 15)."° Since estimation
of life loss (L) has value apart from warning strategies, they presented a revised life-loss
equation independent of the larger model in 1993. The revision followed the same regression

? To my knowledge, Duane McClelland is not immediately related to Professor Gary H. McClelland who
oversaw the work of Michael L. DeKay within the Department of Psychology at the University of Colorado. At the
time of this writing, Gary McClelland and Duane McClelland have never met.

12 Recognizing that many take offense at the notion of putting a dollar value on human life (this author
included), DeKay and McClelland (1991) distinguished between the immeasurable value of an identified life, and
the value to society of reducing “the probability that any individual within the population at risk will live or die:
what they termed a “statistical” life. Nevertheless, they stated that “any decision threshold that is established
implicitly places a value on human life” (DeKay and McClelland, 1991, p. 9; italics were in the original), argued
that this value should be made explicit, and went on to value a statistical human life at between $3 million and $5
million dollars.
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procedures used in 1991, but four new floods'" were added to the data set, and certain values in
the original data set were updated in light of new information.'* Until recently, this revised
equation has generally been accepted as the best regression attempt to date, displacing the
equations by Brown and Graham in recent practice within the USBR and overshadowing the
work by Lee et al. (see, for example, Graham, 1998).

DeKay and McClelland’s (1991) cost-minimization approach to warnings is not central to
this study, so only their regression equations for estimating L will be presented. Chapter IV
explores their model in detail, so only a brief summary is necessary at this point. Table 3.5
presents the complete data set underlying their regression, including the specific variable values
assigned to each case.

As with Lee et al. (1986) a certain degree of subjectivity lies behind most variable
estimates. This is most prominent with respect to warning times (Wt). When more specific
estimates were not available, they modified those values reported by Brown and Graham (U.S.
Bureau of Reclamation, 1989) in the following manner: when Wt was reported as less than a
certain number (Wt < 1 hr), they divided the upper limit in half; when only a lower limit was
reported (Wt > 2 hr), they added 50% to that lower bound; and when a range was reported, they
chose the midpoint of the range. Another subjective variable was flooding lethality, renamed
flooding forcefulness or Force in 1993. It was coded dichotomously: a 1 indicated that more than
15 —20% of the structures that were inundated were destroyed or seriously damaged by the
flood. Because damages were not always known with great precision, DeKay and McClelland
(1991, 1993Db) relied heavily on the expert judgement of Wayne Graham, who was most familiar
with the data set."

Like Lee et al. (1986), DeKay and McClelland chose a logit transformation to preclude
the predicted levels of L from being negative or greater than 100%. Unlike Lee et al., however,
they did not allow each individual to carry equal statistical weight.

Instead, each case was considered a single data point, as in traditional least squares
regression. From this perspective, p = L/Par represents the proportion of fatalities for a given
failure event, rather than the probability of an individual dying in a binomial experiment.

The forms of their final 1991 and 1993 logistic equations were, respectively,

"n addition to Stava Dam which was added in 1991, they added Allegheny County, PA, 1986; Austin, TX,
1981; Shadyside, OH, 1990; and Centralia, WA, 1991.

'2 The reasoning and sources underlying each revision is not included in their paper, but can be obtained
upon request from the authors and is entitled “Appendix: Additions and Changes to the Bureau of Reclamation
Data.”

" 1t is likely that Wayne Graham has the most voluminous data files on U.S. dam failures resulting in loss
of life of any individual or institution in the world. The authors’ gratitude bears repeating for his willingness to
allow us to copy extensively from his files. Without his cooperation, this report could not have been developed in its
current form.
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L(p) = h{lij = —1.650 - 0.513 In(Par) — 0.822(Wt) + 4.012(lethality) — 3.016(Wt)(lethality)
p

(DM-1; 1991)

L(p) = 1n(1 P J = —2.586 —0.4401n(Par) — 0.759(Wt) + 3.790( Force) — 2.223(Wt)(Force)
p

(DM-2a; 1993b)

where L(p) = functional notation for the logit transformation of p,
p =L/Par
Par = population at risk (DeKay and McClelland used PAR and Lee et al. used P),
Wt = warning time, and
lethality = Force, as defined above (represented herein by the symbol Fd).

An effort has been made to preserve the notation chosen by DeKay and McClelland while
introducing common symbols proposed later. It is later proposed that P replace p to conform to a
convention in which all variables begin with a capital letter. Subsequent letters in a multi-letter
symbol should be lower case so variables can rest side by side without confusion. Hence, Par has
been chosen in preference over PAR; it is later suggested that Fd (dichotomous forcefulness)
replace the terms /ethality and Force; and Wt has replaced DeKay and McClelland’s symbol
WTp,: (DeKay and McClelland, 1991) and WT (DeKay and McClelland, 1993b). L also replaces
the symbol LOL for loss of life.

Using the right-hand form of equation L-3a to accomplish the inverse transformation, and
multiplying through by Par to isolate L, equation DM-2a becomes

L exp[— 2.586 —0.4401In(Par)—0.759(Wt) + 3.790(Force) — 2.223(Wt)(F0rce)]

Par 1+ exp|—2.586—0.4401n(Par) — 0.759(Wr) + 3.790(Force) — 2.223(Wt)(Force))

(DM-2b)

which in turn simplifies to
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Par
L=
1+ exp[2.586 +0.4401In(Par) + 0.759(Wt) — 3.790( Force) + 2.223(Wt)(F0rce)] (

DM-2c¢)

Choosing an alternate form, this equation can be modified by pulling the first two terms in the
exponent out front as (e>°%)(e***""®¥) and simplifying to yield their final 1993 equation:

Par
L=
1+13.277(Par®**)exp|0.759(Wt) — 3.790(Force) + 2.223(Wt)(Force)] (

DM-2d)

The corresponding equation based on the 1991 data set is

Par
L=
1+5.207(Par®*") exp|0.822(Wr) — 4.012(lethality) + 3.016(Wt)(lethality))

(DM-1d)

Although the 1991 equation has a higher R* value than the 1993 version (0.9357 vs. 0.840),
equation DM-1d has been superseded by equation DM-2d since equation DM-2d is based on the
same data set with four additional cases and updated values.

Finally, if desired, equation DM-2d can be expressed as the following two separate
equations for a Force of 1 and 0, respectively.

. _ Par
high Foree =1 4 13 .277(Par0‘440 ) exp[2.982(Wt) -3 .790]

(DM-2d.1)

Par
Llow Force = 0.440
1+13.277(Par®**) exp[0.759(W1)]

(DM-2d.2)

Equation DM-2d can also be transformed for comparison to other equations. Recognizing
that 1 in the denominator is almost always small compared to the other terms in the denominator,
the 1 can be dropped, allowing the following simplification:

L ~ 0.075(Par"**)exp|[- 0.759(7t) + 3.790( Force) — 2.223(Wt)(Force)] (DM-2e)

The main value to the approximation in equation DM-2d.1 is that it reveals the close similarity
between the results obtained by confining L to positive values not greater than Par (logit
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procedure) and the best equation DeKay and McClelland developed for their 1991 publication
using non-logit, least squares linear regression techniques, as follows:

L ~ 0.139(Par"™)exp|- 0.895(Wr) + 3.266(lethality) — 2.404(Wt)(lethality)| - 0.5 (DM-3b)

This equation DM-3b was rejected because it could produce impossible estimates.

It should be noted that the underlying form of equation DM-3b is

In(L +0.5) = a + bIn(Par) + c(Wt) + d(lethality) + e(Wt)(lethality) (DM-3a)

The reason for adding 0.5 to the dependent logarithm is to avoid the dilemma that the logarithm
is undefined when L = 0.

The significance of this logarithmic form is that the regression equation will attempt to
closely match life-loss values when losses are comparatively small while allowing greater
variance when life loss is large. To illustrate this, consider that In(200) - In(100) and In(20) -
In(10) are identically equal to 0.7. In least squares analysis, these residuals of 100 and 10 lives,
respectively, would be considered equivalent, generally leading to poor predictions whenever L
is large.

Incidentally, since the logit method also involves a log transformation, similar
consequences hold for it as well. The full implications of the logit transformation will be
explored in Chapter IV.

To explore the relationships used by the USBR, DeKay and McClelland also developed
what they felt was “the best expression for loss of life that can be derived via standard regression

techniques using only population size and warning time as predictors” (DeKay and McClelland,
1991, p. C11). Like DM-3b, it was based on a log transformation of L.

L =1.896(Par"” )exp[-1.819(W1)]-0.5 (DM-4)

In their 1993 work, they derived an equation using the same variables and a logit
transformation, producing what they believed to be “the best expression for L(p) that can be
derived using only WT and Par as predictors” (DeKay and McClelland, 1993b, p. 198).

L(p) = 0.146 — 0.478 In(Par) —1.518(W¢) (DM-5a)
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or

Par

L= (DM-5b)
1+ exp[—0.146 + 0.478 In(Par) + 1.518(W1)]

At no time did DeKay and McClelland offer a regression equation based on using L as an
untransformed dependent variable.

Contributions

DeKay and McClelland are to be commended for producing the best empirical equation
to date. Since their approach makes the event the basis for regression rather than the individual,
they are using variable estimates consistently with the manner in which they were measured.
This is a legitimate theoretical improvement over the assignment of global variables to the
individual (see Lee et al., 1986).

Although the equations by Brown and Graham (Brown and Graham 1988; U.S. Bureau of
Reclamation, 1986, 1989), Lee et al. (1986), and DeKay and McClelland (1991, 1993b) were all
based on global Par rather than subPar, and although they all produced exponential and/or
complex forms that are nonlinear with respect to the size of Par, DeKay and McClelland were
the first to caution that the application of their equation to subPar would violate the principles
under which their equation was developed. Since, proportionately, fewer deaths occur as Par
increases, the more Par is subdivided, the greater the sum of all lives lost will become. Also, the
regression assumes a high level of heterogeneity found in large Par'*—something lost when
subPar are delineated based on homogeneous traits. These issues and others are addressed in
Chapter I'V.

DeKay and McClelland (1993b) recommended omitting Par with more than 3 hr of
warning time and subdividing the remaining Par into a maximum of two groups if the groups can
be distinguished by a significant change in flood forcefulness (i.e., changing from a canyon to a
wide floodplain). They also cautioned against applying their equation to cases outside the range
of the data set, such as those considered by Ayyaswamy et al. (1974).

Shortcomings

Shortcomings to the development by DeKay and McClelland will be treated in Chapter
IV.

' Not only is L nonlinear with respect to Par in all three formulations, but the only case in any of the three
data sets that was subdivided prior to regression analysis was the Teton Dam failure. In many cases, these floods
swept through many distinct communities and Par;, causing great life loss in one area and very little in others as the
warning time and nature of the flood/Par interaction changed.
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The Australian National Committee on Large

Dams Recommends the USBR Method, 1994

As of 1994, the Australian National Committee on Large Dams (ANCOLD) recognized
that life-loss estimations are an important part of dam safety risk analysis, but that “generally the
loss of life issue has been avoided” (Australian National Committee on Large Dams, 1994, p. 5).
In this historic review of dam safety risk assessment, they briefly cover the methods already
developed by McCann et al. (1985), the 1986 methods proposed by the U.S. Army Corps of
Engineers that stopped short of predicting the number of lives lost (Lee et al., 1986), the USBR
procedures (U.S. Bureau of Reclamation, 1989), and the DeKay and McClelland (1993b)
improvements to the USBR procedures.

Although they recognized that DeKay and McClelland (1993b) had improved upon the
USBR equations, they recommended that the 1989 USBR approach be used and they included
the key portions of that report as an appendix. The basis for this inconsistency is not clear, except
perhaps that DeKay and McClelland offered only an equation, while the U.S. Bureau of
Reclamation’s 1989 report outlined an entire set of procedures in great detail. In any case, it
appears that ANCOLD would not have been opposed to substituting the logit equation developed
by DeKay and McClelland for the equations suggested by the USBR.

They make no mention of the models developed by Lee et al. (1986).

B.C. Hydro, 1995

Recognizing that the current empirical developments rely on relatively small databases,
Hartford and Kartha (1995) cautioned that judgment must be used in applying any equation to a
specific dam that has yet to fail. This said, they recommended the use of the logit equation
developed by DeKay and McClelland (1993b) using the general variable estimation methods
outlined by the USBR. Following DeKay and McClelland, they would not allow more than two
subPar, they subdivided Par only when there was a significant change in flood forcefulness or
warning time, and they excluded from Par any individuals with more than 3 hr of warning time.
They made a conservative deviation from both DeKay-McClelland and the USBR in their
calculation of warning time, however, by assuming it is equal to the travel time of the flood.
They also allowed further subdivision of Par in exceptional cases when they attempted more
detailed risk analyses.

B.C. Hydro, 1997, 1998

The Model
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The B.C. Hydro approach represents an attempt to move beyond the current regression
equations and develop a model that tracks individuals in the flood via personalized probability
distributions. Although “B.C. Hydro currently uses the methods of Brown and Graham and
DeKay and McClelland to obtain an initial estimate” for life loss, “the existing methods of
Brown and Graham and DeKay and McClelland were judged to be inadequate for B.C. Hydro’s
needs.” From the authors’ perspective, “predicting how people are going to react under
conditions of dam break flooding is not simply a matter of putting a few numbers into a generic
equation (appealing as it might be to engineers)” (Assaf, Hartford, and Cattanach, 1998, p. 4-17).
Underlying this sentiment is a desire to produce not just an average or expected value for life
loss, but a probability distribution and a confidence description for that distribution.

It should be recognized that the B.C. Hydro approach is still under development,
especially with respect to variable estimation, but the essential framework is in place. The
method was developed under the assumption of a seismically induced dam breach, but applies to
any failure mode. The following pieces of information are needed:

hydrographs, inundation maps, and velocities for each dam breach scenario;

Par;

approximate distribution of Par with time, distance, and elevation;

effectiveness of the local warning systems;

. effectiveness of emergency response plans for industrial plants, schools, hospitals,
individuals, etc.;

6. delay times due to shock or disbelief; and

7. evacuation rates by car and by foot along known evacuation routes and distances
(adapted from Assaf, Hartford, and Cattanach, 1998).

Nk W=

Essentially, the method breaks Par down into subPar that are located in individual
buildings or locations called units. Each unit is quantified using census data. Average occupancy
rates can be used, but specific estimates are preferred and are required for specialized structures
like hospitals and schools. Using a computer algorithm, each Par; is then tracked based on a
representative individual who experiences delay in awareness of the approaching flood, must
overcome shock and confusion once informed, must mobilize and begin to evacuate, and either
makes it free of flooding or encounters flood waters while en route. If free of the flood, there is a
certain probability of surviving based on traffic accidents and the like; if met by flood waters,
there exists a probability of being toppled, and if toppled a probability of surviving, based on the
depth and velocity of flood waters at that location. Calculations continue until the flood wave
reaches its peak along any given evacuation trajectory. Life loss is determined probabilistically
for each Par; and summed over Par.

Using the symbols presented by Assaf, Hartford, and Cattanach (1998) Par; at each unit
are defined by equation BC-1.

P. ARUNIT =TNRyy;r *OAF, UNIT | TDWY (BC-1)
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The associated loss of life for each unit is defined using equations BC-2 and BC-3.

where

LOLUNIT = PARUNIT * (1 - PSURVIVIING) (BC_Q’)

Psvrmve =A=F)* Py p + B * By ¢ (BC-3)

P =0 if WD<LTD (BC-3a)

P =1 if WD > HSD (BC-3b)
= WD-LTD if LTD < WD < HSD (BC-3¢)

HSD—-LTD

LOLuynir = expected loss of life at a given unit (building or area),

PARyuNIT = number of people residing at the unit at the time of the flood,

PsurvivinG = probability of surviving the flood,

TNRuniT = total number of residents occupying a unit,

OAFuniTrDWY = expected occupancy of the unit during the particular day, week, and
season of the dam failure,

Pr = probability of being toppled by the flood,

Pse = probability of surviving given that the individual successfully retreats
to safe ground,

Ps/c = probability of surviving given that the individual was caught by the
flood.

WD = water depth,

LTD = lowest toppling depth, and

HSD = highest safe depth.
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Currently, key variables are quantified based on distance from the dam as a surrogate for
functional relationships with depth and velocity, but the modelers plan to eliminate the use of
surrogates in later stages of model development. As examples of current surrogate use, the
probability of toppling is defined linearly between those depths that are known to be too shallow
to topple anyone (Pt = 0) and those which will topple everyone (Pt = 1). Theoretically, these
depths will vary with flow velocities and the physical capabilities of the fleeing parties, both of
which should be considered when selecting the highest safe depth (HSD) and the lowest toppling
depth (LTD). In this early stage of model development, however, HSD and LTD are varied only
with distance from the dam. They are selected with the help of human stability curves presented
in U.S. Bureau of Reclamation (1989). As another example, Ps,c theoretically describes the
probability of surviving flood waters as a function of flow velocities, individual physical
abilities, and the efficiency of rescue operations, but like HSD and LTD, at this stage of model
development it currently increases only with distance from the dam.

Modelers simulate a unique evacuation chronology for each PARyn;r in order to
dynamically track the temporal interplay between the location of individuals along their
evacuation route and the presence or depth of flooding. The Time to First Awareness of Flooding
(Trar) and any subsequent Time Delays (TpgpLays) prior to leaving a unit are combined with the
subsequent Rate of Escape (Rpscape; measured as a rise in elevation) to place the PARynir at the
appropriate depth when the flood arrives. If the representative person never leaves his or her unit

(t < Tgar + Z(TpeLAys), then

ELV pir@unir (1) = ELV (BC-4)
otherwise,

ELY nugomir ®) = ELV gy + [t = Ty + 2 Togr s )1* Rascare (BC-5)
where t = the increment of time being considered.

ELVpar@unit = the elevation of the unit’s representative member at time t.

ELVyunit = elevation of the unit calculated from a topographic map and confirmed
using GPS equipment during site visits.

The only variable needed to relate this evacuation process back to the life-loss equations
presented above is the depth of water through which the representative member of PARynr 1s
wading [WD(t)]. This is the difference between ELVparunir(t) and the River Stage Level
[RSL(t)] obtained from dam breach simulation using a program like DAMBRK.

55



WD(t) = RSL(t) = ELV 1 @ unir (£) (BC-6)

Running the model using discrete increments of time from t = 0 to t = the time of peak flooding
at the unit, the river stage at a given increment of time, RSL(t), is compared to ELEVparg@unit at
each time increment. The comparisons are terminated when ELEVparg@uniT rises above the peak
RSL. If the representative person never wades through water deeper than the lowest toppling
depth (LTD), she is assumed to escape floodwaters and has a Pg probability of surviving. If she
wades through waters greater than highest safe depth (HSD), her probability of surviving
(Psurviving) drops to Pg,c using the maximum depth ever encountered. However, since Pg/c
currently varies only with distance from the dam, not with depth, the maximum depth is
irrelevant until the model is upgraded. If the maximum depth encountered falls between the
lowest toppling depth (LTD) and the highest safe depth (HSD), depth will be considered using
equation BC-3c.

Finally, the model formally recognizes the uncertainty involved in variable estimates by
using a Monte Carlo simulation approach. There are two levels of uncertainty: the average value
assigned to each variable and the specific value that holds true for a give unit on the day of the
failure event. Assaf, Hartford, and Cattanach (1998) recommend producing either a range of
possible values for each variable or a probability function for each. A probability distribution of
life loss can then be produced for each type of failure event by running Monte Carlo simulations
with the assigned distributions. Based on personal conversations with Assaf, he hopes to use
empirical research such as that underlying the current report to provide future guidance on
probability distributions to run the model.

The distributions produced for each type of failure event can be combined into a single
life-loss probability function by first weighting the distribution for each type of event by its
frequency of occurrence and then summing them all together. Failure events differ by time of
day, week, and year, as well as by the loading magnitudes leading to breach and the subsequent
nature of the failure itself. The entire procedure entails assigning individual probability
distributions to each branch of a life-loss event tree, running a separate Monte Carlo simulation
on each event pathway that leads to life loss, and summing these terminal life-loss probability
distributions. Typically, the terminal distributions will be weighted according to their frequency
of occurrence through the structure of the event tree.

Contributions

There are obvious strengths to the approach proposed by B.C. Hydro, despite the fact that
it is still under development. Theoretically, the model accounts for most of the elements affecting
life loss, circumventing the nonlinearity problems inherent in applying equations developed for
global Par to subPar. In this case, the sum of the parts should certainly equal the whole. Also,
there is a certain emotional confidence or satisfaction that can be derived from using a model that
evaluates life loss on a scale approaching the individual. Although census data do not allow
modelers to track individuals with their unique psyche and physical capabilities, choosing
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individual buildings as units is much more refined than applying regression equations to entire
cities or a series of communities for which many variables represent gross averages at best.
Moreover, the detail associated with the B.C. Hydro model can potentially satisfy those who
share the sentiments of Assaf, Hartford, and Cattanach:

The criticism that the model is too complex and has too many variables is, we
feel, unreasonable. The logic structure is very straightforward and it has withstood
expert review. We are confident that we can put the logic structure forward “with
moral certainty” as the best way presently available to deal with this component
of a risk analysis. . . . Dam safety is a serious business. . . . That risk management
for dam safety doesn’t come cheaply or easily should not come as a surprise.
However, we are duty bound to do the best that we can under the circumstances
and demonstrate due diligence in making decisions about public safety. (Assaf,
Hartford, and Cattanach, 1998, p. 4-24, 4-25)

Shortcomings

This said, until the developers can achieve their planned model refinements, there are
serious shortcomings to this approach as it exists today. The developers agree, believing that
their sample predictions have lacked credibility due to the large number of variables that must be
estimated subjectively. They hope that this can be overcome through more detailed studies about
the important variables and through calibration with historical case studies in order to back-test
the model. They also recognize that the model explicitly accounts only for drowning deaths,
ignoring deaths due to heart attacks, road accidents, and convergence losses from people not
originally located in one of the units under study. They discount the importance of such deaths as
random occurrences but these types of deaths could possibly be accounted for in the distribution
for PS/E-

Apart from the concerns of the model’s authors, there are limitations in the logic of the
model itself. First, variables like the probability of surviving given that the individual was caught
by the flood (Ps/c), the lowest toppling depth (LTD), and the highest safe depth (HSD) are
heavily dependent on the physical capabilities of the individual. Yet, the individual is never in
view, only a representative individual assigned to each PARunir. Is LTD based on an infant, a
small child, a healthy adult; those who are more feeble or immobile due to age, illness, or
disabilities; or a representative composite of these? Since life loss is not based on degrees of
death, it is highly unlikely that “average” or “representative” members of PARyniT would topple
or perish at the same rate as that found by combining the fates of the smaller or less capable with
those of the larger or more capable. One solution might be to distribute characteristics of age,
mobility, health, and size to the unit representatives according to the proportions in the real
population. This still neglects the dynamics found in families and among neighbors—for
example, the more feeble are likely to receive assistance, while the more able are often slowed or
handicapped by the need to carry children or to help others—but it may be possible to capture
some of these dynamics by slowing the rates of evacuation for designated representatives.
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Second, notice that an error in estimating a probability is different than a random error.
When summed across a large number of units, an erroneous probability distribution skews every
result in the same direction. When distributions are multiplied together, errors can compound
exponentially. Hence, the more complex the model (the more distributions that must be
considered) the greater risk there is for amplification of errors. Estimates that are based on
regression using larger-scale units avoid this because the regression accounts for variance among
individuals rather than assuming a skewed distribution and then summing the same error across a
large number of units.

Third, it will likely prove very challenging to provide dependable estimates for many of
the variables needed for the model. This is because realistic field conditions cannot ethically be
duplicated in the laboratory and many distributions (i.e., velocity*depth curves) are highly
specific not only to each event, but to each location within each reach.

As an example of the challenges faced by the modelers, the values Assaf, Hartford, and
Cattanach (1998) used for lowest toppling depth (LTD) and highest safe depth (HSD), which lie
behind Pr, were loosely based on a human-stability curve presented in U.S. Bureau of
Reclamation (1989, see p. 111 — 112). This, in turn, was derived from the study conducted by
Abt et al. (1989) described above. The USBR took the lowest velocity*depth product number
found in that study (7.56 for a 90 1b female) and used it to plot a velocity vs. depth curve for
which every coordinate pair has a product of 7.56. Presumably, this curve represents the
boundary for LTD."> While not plotted by the USBR, the highest product number they reported
(“over 22” for a 201 1b male) presumably underlies HSD. As mentioned before, these values
presume ideal conditions: a uniform flume with no sudden waves, no eddies, the reassurance of
safety equipment, no billowing clothing or shoes, no mud or debris, good lighting, no panic or
fear, no need to carry children or precious belongings, warm water and weather conditions, no
wind, solid ground with good traction that is free from dips or holes or obstacles over which one
might trip, and healthy adults over 5 ft tall. Such conditions would not be expected in the field,
nor would conditions be consistent across events or for every unit. One could not ethically
duplicate true field conditions in a laboratory, and historical data are not likely to be sufficiently
detailed or accurate to allow a refined analysis in the narrow range between the lowest toppling
depth (LTD) and the highest safe depth (HSD).

Even if one could know the true toppling-death distributions for every unit, current
evacuation models cannot place people in sufficiently refined estimates of depth and velocity to
make the distributions useful. This level of refinement would require that the rate of escape
(Rescape) have a unique function for each PARynyr. If a custom equation is to be developed for
each unit, the trajectory of escape must be estimated for each residence, a detailed chronology of
elevations must be recorded, and a dynamic rate of progress along the path must be described.
This, in turn, must be uniquely coded into a computer as a function of physical geography,
human psychology, prior experiences with flooding, evacuation experience, the direction
children will run and whether or not their parents will give pursuit, the paths residents know and

' Although LTD is only a depth, it has been assumed that B.C. Hydro derived it based on first routing the
flood to determine the depth vs. velocity relationships for the flood and then back-calculating the depth that yielded

a product number of 7.56 at each cross section downstream.
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travel, bottlenecks, the amount of warning time, environmental conditions, prior flooding, traffic
accidents, and many other factors. If an individual must complete an evacuation by wading, a
reduced rate of progress must be assumed from that point on. This also becomes a function of
depth and velocities, requiring that very small time steps be used and that the evacuation function
is updated with every time step. If a more generic function were developed that described only
elevation changes (Assaf, Hartford, and Cattanach used a uniform rate of 50 m per hour), it
completely ignores the fact that most terrain does not rise at a uniform rate, residents may have
to scramble down into gullies in order to gain elevation on the other side, and the rate of
evacuation will vary dramatically along the length of the floodplain.

Even if both toppling distributions and evacuation functions could be refined, current
dynamic flood routing models cannot provide more than a coarse estimate of the depths and
velocities at any particular location—far too coarse to target the narrow range between the lowest
toppling depth (LTD) and the highest safe depth (HSD). To complicate matters further,
catastrophic floods are characterized by unpredictable waves, pathways, and extreme variations
in depth due to their turbulence, momentum, and debris load.

Fourth, if the third point is true with respect to the range between LTD and HSD, then
equation BC-3c¢ can be discarded, equation BC-3b can be set equal to a value less than 1 to
include all depths in which people might topple, and the entire method can be reduced to the
flood-travel-evacuation model proposed by Lee et al. (1986).

Assaf, Hartford, and Cattanach (1998) do depart from the flood-travel-evacuation model
in one important respect. The entire B.C. Hydro model rests on the assumption that every
member of Par evacuates on foot. Pt implicitly assumes an individual must be toppled to perish,
and that this in turn is a function of human stability when standing in a flood. This is contrary to
both intuition and history. When warning time is more than a few minutes, many individuals
choose to evacuate by automobile; when warning times are so short that people do not expect to
reach the hillside, they usually seek shelter inside of buildings, especially when there is an upper
floor or access to the roof (insight from Appendix B). In a personal conversation with Assaf, he
agreed that the assumption of universal evacuation on foot is inadequate and indicated that a
future goal is to incorporate more realistic evacuation assumptions into the model. In the mean
time, shortcomings five and six, below, still apply.

Fifth, fatalities involving occupants of automobiles constitute an important source of
deaths in flash floods and dam failures. To recognize this, the model would have to include rate
of escape (Rgscapg) for motorists and the probability that each PARynit would seek to evacuate
by automobile. These probabilities would be specific to the circumstances of each unit. Motorists
that did not clear the flood zone would be subject to a depth*velocity*Prrappep IN AN
avtomoBiLE*Ps/c relationship. If it were desired to calculate these types of relationships on the
detailed level of LTD, HSD, and the probability of toppling (Pr), the probabilities would have to
be specific to each type of vehicle and to each setting (truck, RV, bus, compact, 4-wheel drive;
off-road or on-road; bridge, intersection, elevated street, etc.). All of the concerns expressed
under the third shortcoming again come into play.
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Sixth, while the B.C. Hydro model allows for people to be caught in buildings, it assumes
they attempt to evacuate as soon as they can. When people are caught in buildings, the buildings
are assumed to offer no shelter: the datum for flood depths remains the ground (ELVpar@unir(t)
= ELVynir) and the probability of surviving given that the individual was caught by the flood
(Ps/c) 1s applied as if the representative member of PARynyt is standing in the full force of the
flow. There is no mechanism for determining whether it is safe higher in the building, whether
occupants are likely to seek such havens rather than risking an open-water encounter, whether
the building walls diminish the depths and velocities, or whether a building remains standing or
is destroyed. Based on historical evidence, such considerations dominate life-loss dynamics in
many floods, making the depth*velocity dynamics among waders a peripheral issue.

Seventh, in real floods probability of toppling (Pt) depends not only on the severity of the
flood, but on the nature of the floodplain. Are there trees, telephone poles, rooftops, floating
debris, or other aspects that might provide sources of refuge until emergency help can offer
rescue assistance? Although Pt theoretically includes such considerations, Assaf, Hartford, and
Cattanach omitted such factors when making their preliminary estimates.

Eighth, the model currently has little empirical foundation, so there is no basis for
accepting it in favor of the empirical equations it attempts to replace.

Ninth, the model is likely cost-prohibitive. Expensive research would be required to
estimate uncertain variables with the accuracy needed for the model. The modelers also require
analysts to confirm the elevation of every unit through site visits, presumably through the use of
GPS equipment. If the cost of risk assessment surpasses the costs of the most stringent,
standards-based fixes, a life-loss model becomes mute.

Conclusions

Assaf, Hartford, and Cattanach (1998) can be commended for describing important
details of interplay between evacuation and life loss based on first principles. Perhaps the
greatest strength of the model is that it recognizes that life-loss dynamics are governed by
uncertainty that is best captured through probability distributions. If the modelers can achieve
their future objectives for refining the model, the model will have great promise. At the present
time, however, the model proposes greater detail without regard for historical trends, without any
guidance on how to develop reliable distributions, and without sufficient refinement to capture
realistic evacuation patterns. It is likely the model developers would be the first to admit this,
since their model is in early development. It is likely, with the mounting levels of uncertainty,
that an application of the model to a portfolio of dams must either sacrifice detail or consistency.

Graham, 1999

As mentioned earlier, the recent practice of the U.S. Bureau of Reclamation was to use
DeKay and McClelland’s logit equation DM-2d in place of those by Brown and Graham (U.S
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Bureau of Reclamation, 1989). In 1999, the U.S. Bureau of Reclamation began using a model
developed by Wayne Graham (Graham, 1999). The model was formally published and is being
advocated by leading dam safety risk analysts as the best dam-safety life-loss model currently
available.

The Model

Graham expanded the data sets used by Brown and Graham (U.S Bureau of Reclamation,
1989) and Dekay and McClelland (1993b) to include floods of higher relative lethality or that
were otherwise different than those in the original data sets. In some cases he selected
subpopulations at risk (subPar) to focus on specific sets of circumstances. The mixed data set of
overlapping Par and subPar represented approximately 26 dam failures, 40 floods, and 50
populations.

Graham divided the 50 populations among 15 categories based on unique combinations
of three dominant factors that influenced life loss: the flood severity, the warning time, and the
extent to which the population at risk understood the severity of the approaching flood. He then
averaged the proportional life loss (P; = Lj/Par;) within each category and identified the lowest
and highest life loss rates to provide a historic range. As a refinement, he subjectively adjusted
the averages and ranges to provide a table of suggested values for use in estimating life loss
when a predictive scenario matches one of the 15 categories; the categories were intended to be
comprehensive.

Table 3.8 indicates the historic populations that matched each unique combination of
variables, the historic fatality rates, their ranges and averages, and Graham’s suggested values for
use in life loss estimation. The variables and their classifications are defined below with
Graham’s guidelines on their use. As indicated in the notes to Table 3.8, none of Graham’s
historical populations fit five of the 15 categories, but he did provide suggested values (best
estimates) and ranges for estimating life loss for these categories.

Graham classified flood severity as low, medium, or high. A flood has low severity when
homes are flooded but not destroyed; medium severity when some homes or businesses are
destroyed or knocked off their foundations, but some homes and trees remain unsubmerged; and
high severity when the floodplain is swept clean with little trace of any prior existing structures
or vegetation.

As guidance for choosing a classification when applying the model to hypothetical flood
events, Graham suggested that flood severity should only be classified as high when a dam fails
nearly instantaneously, thereby failing within seconds, and only where flood waters are close
enough to the dam to be “very deep” (Graham, 1999, p. 35). To distinguish between low and
medium severity, he suggested two criteria, one based on depth and one based on the parameter
DV, designated destructive depth (Dv) in Chapter V. Graham defined DV as DV = (Qgr—
Q2.33)/Wdf, where

Qqr = discharge at a particular site caused by dam failure.
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Q233 = mean annual discharge at that site (approximately the bankfull flow rate).
Wy = maximum width of flooding caused by dam failure at the same site.

When depths are less than 10 feet or DV is less than 50 ft*/s (4.6 m?/s), flood severity should be
low. When depths are greater than or equal to 10 feet, or DV is greater than 50 ft*/s (4.6 m%/s),
flood severity should be medium when not high.

Graham defined an initial warning as one that comes from the media or an official source.
Based on this definition, he chose a trichotomous division of warning time:

1. None (only the sight or sound of the approaching flood serves as a warning).

2. Some (officials or the media begin warning the subpopulation 15 — 60 minutes
before the flood arrives).

3. Adequate (officials or the media begin warning the subpopulation more than 60
minutes before the flood arrives).

As these categories indicate, warning time is the elapsed time between when the first official
warning reaches a subPar and the flood wave reaches that subPar. As such, it is based on the
distance to the subPar, the rate of flood wave travel, and the point in time when official warnings
would be initiated. The rate of flood wave travel can be estimated through flood wave modeling.
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Table 3.8. Graham’s database and suggested values for modeling proportional life loss by
category (adapted from Graham, 1999, Tables 5, 6, and 7)
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Table 3.8. Continued
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Table 3.8. Continued

SYMBOLS:

L Life loss specific to the Par or subPar in question

Par Population at risk

P Proportional life loss (P; = L;/Par;)

Tpar  Threatened population, defined as the population that remains in the floodplain when the flood wave
arrives.

NOTES:

1.

Column 5, “Par or SubPar,” was not included in Graham’s tables. The column was added to indicate whether
the population in question represented the global population at risk or a subpopulation. In cases where an event
is designated as Par in one row and a subPar in another row, the populations are nonexclusive.

There were no historical examples for 5 of Graham’s 15 categories: the four categories with high flood severity
and warning time greater than 15 minutes and the single category with low flood severity, warning time greater
than 60 minutes, and vague flood severity understanding.

Graham suggested approaches for estimating life loss for those five categories for which no empirical data
existed (see Note 2, above). For the four categories with high flood severity and warning time greater than 15
minutes, Graham suggested that the analyst calculate the proportion of the threatened population that perishes
(Ptpar; = L/Tpar;) instead of the proportion of the population at risk that perishes (P). He recommended
applying the proportional life-loss rate (P) that is found when there is no official warning to Tpar rather than
Par, but he specifically indicated that his model provides no guidance on how to estimate the size of Tpar. For
the category with low flood severity, warning time greater than 60 minutes, and vague flood severity
understanding, Graham suggested an expected value and range of expected proportional life loss based on
judgement and patterns seen in related categories.

“St. Francis Dam, hypothetical,” the final data point under events with high flood severity and no warning time,
is not strictly an empirical data point. Graham did not use the word hypothetical, but he wrote “How could you
survive?” (Graham 1999, Table 5) and excluded estimates of population at risk and life loss to indicate he was
considering the concept of the St. Francis Dam failure rather than the historical record. The historical record
indicates amazing accounts of people who actually did survive, so at most locations the historical life loss was
close to, but slightly less than, 100%.

The symbols L, Par, P, Tpar, and Ptpar were not used by Graham. They are defined in Chapter V and are
consistent with the concepts Graham described.
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Graham produced Table 3.9, based on his expert judgement, to provide guidance on estimating
when a dam failure warning would be initiated for failure of an earthfill dam.

Flood severity understanding is a dichotomous variable classified as vague or precise.
The distinction is subjectively based on the flood wave travel time and whether a warning
precedes or follows the actual time of failure. The greater the flood wave travel time, the more
likely subsequent warnings will accurately convey the flood severity because officials will have
time to evaluate the nature of the flood. However, if a warning anticipates a dam failure, that
warning is likely to have reduced credibility and result in vague flood severity understanding
among recipients.

As with previous models, it is first necessary to select a dam-failure scenario to use
Graham’s model to predict life loss. This scenario should include:

1. Temporal considerations that are relevant to the area (day or night, seasonal
variations in population, daily and weekly migration patterns for work and school, other
temporal considerations).

Table 3.9. Guidance for estimating when dam failure warnings would be initiated for failure of
an earthfill dam (adapted from Graham, 1999, Table 2)

When Would Dam Failure Warning Be
Initiated?

Many Observers| No Observers at Dam

at Dam (hours (hours after floodwater

Cause of Time of| before dam reaches first populated

Failure Special Considerations Failure failure) area)
Overtopping [Drainage area at dam < 100 mi’ Day 0.25 0.25
Night (0.25) 1.00
Drainage area at dam > 100 mi’ Day 2.00 1 hr before dam failure
Night 1.00 - 2.00| O - 1 hr before dam failure
Piping Full reservoir, normal weather Day 1.00 0.25
Night (0.50) 1.00
Seismic Immediate failure Day (0.25) 0.25
Night (0.50) 1.00
Delayed failure Day 2.00 0.50
Night 2.00 0.50
NOTES:

1. “Many Observers at Dam” means that a dam tender lives on high ground and within sight of the dam, the dam is
visible from the homes of many people, or the dam crest serves as a heavily used roadway. These dams are
typically in urban areas. Negative values mean that the warning is initiated after the dam fails.

2. “No Observers at Dam” means that there is no dam tender at the dam, the dam is out of sight from nearly all
homes, and there is no roadway on the dam crest. These dams are usually in remote areas.
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2. An estimate of when warnings would be officially initiated and how this would be
influenced by the chosen temporal considerations.

3. The area flooded and the associated flood severity.

4. An estimate of the size of each subpopulation at risk. Graham’s model is intended to
be applied to relatively homogeneous subPar, so the Par should be subdivided when areas differ
in terms of the flood severity, warning time, or flood severity understanding. Unless a failure
flood is exceptionally large, Par should extend 30 miles downstream and no further.

Once the size of each subPar is determined and its associated flood severity, warning
time, and flood severity understanding, the analyst multiplies the size of each subPar by the
suggested value of P from Table 3.8, estimates the range of life loss for each subPar using the
suggested range of P, and sums across the subPar to determine the total estimated life loss
(estimated average) and range of life loss.

Contributions

Graham’s 1999 life-loss model has many appealing characteristics, which explains its
rapid rise to prominence in dam safety risk analysis practice in Australia and North America. The
more notable strengths of the model are itemized below:

1. The database on which the model relies contains a greater number of data points and
a more diverse selection of event characteristics than the databases underlying previous dominant
empirical models. This increases the model’s credibility and range of application.

2. The life-loss equations take the form L; = P;*Par; = (best estimate of Li/Par;)*Par;.
There are no inherent nonlinearities in the relationship between P or L and the size of Par, so the
estimate of L is not necessarily increased when the model is applied to subPar. This allows the
analyst to apply the model in ways that are most intuitively satisfying by focusing on relatively
homogeneous subPar for those events where Par is clearly heterogeneous with respect to flood
severity, warning time, or flood severity understanding.

3. By providing a range of estimated life loss, rather than just a best estimate, the model
begins to explicitly recognize the inherent role that uncertainty plays in life-loss estimation.

4. Graham has identified three variables that empirically play dominant roles in rates of
life loss: flood severity, warning time, and the relative urgency with which warning recipients
feel they must evacuate.
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5. The model affirms the importance of viewing life loss from the vantage point of
subPar that are relatively homogeneous with respect to key predictive parameters. This is clear
since 18 out of Graham’s 50 data points are subPar, the model explicitly breaks life-loss
estimation down on the basis of homogeneous “bins,” and Graham indicates that the model
should be applied to subPar rather than heterogeneous global Par.

6. Life-loss relationships were empirically grounded and refined based on the
judgement of a leading life-loss expert (Wayne Graham). The suggested ranges have credible
orders of magnitude, they progress in a logical sequence, and they are open to refinement as
additional data becomes available.

7. A key insight incorporated into the DeKay-McClelland equation was the importance
of flood severity. Graham has expanded this concept from a dichotomous variable to a
trichotomous variable, refining its application.

8. The model is relatively easy to understand and easy to apply. The extent to which
life-loss estimates are repeatable by independent analysts depends on the extent to which they
agree on the natural division of subPar and the corresponding estimates of warning time and
flood severity understanding. Graham has provided guidelines that should make agreement on
these parameters relatively high.

Limitations

The primary shortcomings of Graham’s model arise because the model does not
go far enough in subdividing Par into subPar that are homogeneous with respect to key
parameters or Graham defines key parameters in a manner that is sub-optimum. The most
important limitations are explained below:

1. Although Graham’s data set includes subPar that are more homogeneous than in
previous data sets, both the Par and the subPar still represent high levels of heterogeneity with
respect to flood severity, warning time, or flood severity understanding. It is difficult to know the
extent to which historical life-loss rates apply to subPar chosen for modeling when the historical
life-loss rates are based on non-homogeneous Par and subPar.

For example, the Par; Graham used to estimate rates of life loss when the floodplain is
swept clean may result in underestimates of life loss when Graham’s suggested life-loss rates are
applied to more homogeneous subPar. Referring to events in Table 3.8 with high flood severity,
the following modifications to Graham’s assigned values could be made based on research that is
documented in unpublished working papers produced by Duane McClelland and that underlie
Table C in the current report:

a) 125 out of 150 houses were destroyed due to the failure of Vega De Tera Dam. If
a homogeneous subPar were chosen, such that Par; was limited to people in buildings that
were destroyed, Par; would be 125/150%500 = 417 instead of 500 and the life-loss rate
would be 36% instead of 30%.
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b) All that is known about the Bear Wallow Par; is that two houses were destroyed
and all 4 occupants were killed in one of the two houses. It is not known how many
people escaped the second house, whether anybody occupied the second house during the
flood, or even whether the report of a second house was accurate. If one limited Par; to
the known occupants of the floodplain, the life loss rate would be 100% instead of 50%.

c) The California Edison Construction Camp was a tent camp located in a high
meadow, so the maximum flood depths in the camp were about 10 feet. If flood severity
is defined as the damages that would have occurred to solid buildings, the flood severity
may have been medium instead of high.

d) It is unlikely that all 27,000 members of Par during the Amero Lahar were
located in areas that were swept clean, so a life-loss rate of 0.815 may be low compared
to that in the hardest-hit regions.

e) Twelve of the 300 members of Par during the Stava Dam failure were located in
an undamaged portion of the Dolomiti Hotel. The homogeneous subPar with a high flood
severity had a life-loss rate of 270/288 = 94% rather than 90%.

f) Nearly every survivor of the Vaiont Dam failure in Langarone, Italy, was located
far up a hillside where flooding had low severity and every person survived. Of those
located where the floodplain was swept clean, the fatality rate was 99%, not 94%.

g) See Note 4 under Table 3.8: The rate of life loss during the St. Francis Dam
failure varied by location, but in the hardest-hit areas, the rate of life loss varied from
about 71% to 100%, with a representative value of around 93%— 96%.

h) McClelland and Bowles (current report) conducted a detailed analysis of 38
subPar for which every structure was completely destroyed. Among people that failed to
evacuate (Tpar;), life loss averaged 86%, although in some cases the people had moved to
safer locations before the flood arrived. In a subsequent analysis of 45 homogeneous
subPar, the analyses were refined to consider only people who encountered the flood in
areas where every house was destroyed or would have been destroyed. Under these
conditions, the life loss rate increased to an average of 92%.

These contrasts between subPar that are homogeneous with respect to high flood severity
and those that are merely dominated by high flood severity suggest that an expected value for P
might be on the order of 0.86 or higher for homogeneous subPar experiencing high flood severity
and no warning time. The range of life loss would likely also be higher. Similar analyses could
be conducted for the other categories in Table 3.8. In summary, the heterogeneity in the
underlying data set calls into question the extent to which the suggested values for estimating P
apply to the unique characteristics of any given subPar.

2. Graham’s trichotomous approach to flood severity is an improvement over Dekay
and McClelland’s dichotomous approach to flood forcefulness—especially because it recognizes
that rates of life loss are much higher among structures that are swept away than among
structures with major damage. Nevertheless, medium flood severity is inherently heterogeneous
with respect to housing damages and loss of shelter (see variable Ls in Chapter V) because it
includes every combination of housing damages between no houses being washed off their
foundations and the floodplain being swept clean. This heterogeneity, in combination with large
differences in life-loss rates between categories of flood severity, builds a form of nonlinearity
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into the model that can cause life-loss estimates to vary dramatically based on how Par is
subdivided into subPar.

To illustrate this point, consider the Buffalo Creek coal waste dam failure. Graham has
represented the population at risk for the Buffalo Creek coal waste dam failure as a single Par
with medium flood severity and no warning time (Table 3.8). Historically, there were 17 distinct
mining towns spaced in regular increments along the 15-mile-long Buffalo Creek Valley. In the
upper reaches, flood severity was high; in the middle reaches, flood severity was medium
longitudinally and ranged from high to medium laterally; and in the lower reaches, flood severity
was low. Because Graham’s model is intended to be applied to subPar, there would naturally be
at least 17 subPar that could be combined into three subPar based on flood severity and no
warning time (with no warning, flood severity understanding does not apply, reducing 15
potential categories to three). Historically, there were 1,084 flooded houses, which results in an
occupancy of 4.61 persons per house at the time of the flood based on Graham’s estimate of Par
=5,000.'

In the upper half of the valley, the flood progressed in a manner that utterly stripped the
center of the valley of every structure, wiping it clean, and that damaged or displaced structures
near the edge of the valley, causing them to stack up. At least two approaches to subPar are
possible using Graham’s model: one that subdivides by community, and one that subdivides by
lateral distance from the original stream channel. In the first case, the floodplain was swept clean
for the first 35 houses, followed by a mix of obliteration and major damage for the remainder of
the valley until 163 houses experienced only minor damage in the two towns at the valley mouth.
Using this approach, L = (4.61 persons per house)*[(35 houses in a high flood severity subPar *
0.75) + (886 houses in a medium flood severity subPar * 0.15) + (163 houses in a low flood
severity subPar * 0.01)] = 741 or 15%.

In the second approach, 546 houses were wiped away in a nearly continuous strip down
the center of the valley. Adjacent to this continuous subPar were subPar that were occasionally
discontinuous, depending on how the flood bounced down the valley. However, the 375 houses
making up these subPar all experienced medium flood severity with a mix of damages: many
houses were knocked off their foundations and piled up downstream and only 58 houses had
minor damage. Finally, all 163 houses in the lowest towns experienced low severity flooding.
Defining three subPar by the flood severity in the surrounding area, L = (4.61 persons per
house)*[(546 houses in a high flood severity subPar * 0.75) + (375 houses in a medium flood
severity subPar * 0.15) + (163 houses in a low flood severity subPar * 0.01)] = 2,155 or 43%.

If warning time was greater than 15 minutes for some subPar, the number of subPar the
analyst must consider would increase, and the number of possible life-loss estimates would
similarly increase, although the discrepancies would likely be less dramatic than those seen
above.

' Although Graham indicates that there was no official warning, our research indicates that there were official
warnings by radio, by police, or by mining officials that preceded the flood arrival in most communities by more
than 48 minutes. The warning time for individuals was often much less and the flood severity understanding was
sometimes vague. Our research also suggests that, in contrast to a Par of 5,000, a Par of about 3,170 was more likely
the case.
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To the Graham Model’s credit, the gross overestimation of life loss in the case of the
Buffalo Creek coal waste dam failure is probably due more to a misclassification of the flood
event than to a predictive weakness in the model. Based on our research, it may be more
appropriate to classify the global Par as experiencing medium flood severity with an average
warning time slightly less than one hour and vague flood severity understanding. Also, there are
compelling reasons to assume that Par was about 3,170 people, instead of 5,000. Given these
changes, and treating the population at risk as a single Par, Graham’s model would estimate the
life loss as 3,170*0.04 = 127. This compares favorably with Graham’s historic estimate of L =
125.

3. As with flood severity, Graham’s definition of warning time results in built-in
heterogeneity that can potentially limit the accuracy and flexibility of the model. Limitations
caused by a trichotomous definition of official warning time fall into four categories:

a) A warning time of 0 — 15 minutes is not specifically defined, but it appears that it
must be treated as no warning. This is unfortunate, because, historically, the first fifteen
minutes of warning time have often produced the greatest reductions in life loss. Table
3.10 provides important examples of specific, historic subPar for which short warning
times dramatically reduced life loss. Table 3.10 is based on Table C in Appendix C, it is
not comprehensive, and it could easily be expanded. The subPar number (#.#) refers to
the event number and subPar number in the table.

b) A warning must come from a public official or the media before it can be
considered in the model. This discounts the historically important role that informal
warnings from neighbors and sensory clues have played. Figure 7.X, which is described
in Chapter VII, suggests that, given the right circumstances, a three-minute warning from
sensory clues or informal sources can reduce the expected life loss by more than 80%.

c) Figure 7. X illustrates that small changes in the average warning time can have
large impacts on life loss. This is not adequately captured by the broad increments of
warning time used in Graham’s model.

d) It is difficult to compare events using warning time, because warning time gives
no indication of the required evacuation time. A warning time of eight minutes may be
more than enough time for a family to climb above the approaching flood in a narrow
canyon, but it may be difficult to evacuate from a large city with a warning time of 30 or
45 minutes. Similarly, a 15-minute warning may be adequate to evacuate a hotel filled
with healthy adults, but it may be possible to evacuate only a small fraction of the
residents in a nursing home given the same warning time. As this illustrates, warning
time without some measure of the representative evacuation time (Ret) is a poor metric
for comparative life-loss estimation.
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http:3,170*0.04

Table 3.10.  Examples of low life loss due to official warnings shorter than 15 minutes

Proportional Life

Flood Warning Flood Loss Predicted Historic

Severity Time Severity by Graham’s Proportional

SubPar (approx.) | (minutes) | Understanding Model (P) Life Loss (P)
12.1 High 2 n/a 0.75 0.079
29.12 Low 5 n/a 0.01 0.00
29.8 Medium 5 n/a 0.15 0.00
18.13a High 4 n/a 0.75 0.00
18.1a High 10 n/a 0.75 0.00
29.7 High 5 n/a 0.75 0.00
29.2 High 9 n/a 0.75 0.024
29.6 High 5 n/a 0.75 0.049
29.10 High 9 n/a 0.75 0.00
29.13 High 5 n/a 0.75 0.072
29.14 High 7 n/a 0.75 0.10

4. Graham’s model is based on a data set for which the inclusion or exclusion of zero-
life-loss events is subjective (see Chapter II). This is not a major concern, but it weakens the
credibility of the resulting empirical life-loss rates. For example, if 20 subPar with medium flood
severity, warning time in excess of 60 minutes, precise flood severity understanding, and zero
life loss were added to the data set, the historic average life loss in this category would be
reduced from 0.033 to 0.005.

5. Although the model recognizes the importance of uncertainty, uncertainty is not
captured in probabilistic terms. One possible solution to this would be to calculate relative
frequency distributions from the data points and then to use these to characterize the uncertainty.
Unfortunately, there are currently too few data points in most or all of the categories to make this
practical or credible.

6. The model would be strengthened if the available guidance on how to apply it were
refined.

7. Currently, flood severity is based on damage to buildings. This concept should be
expanded to include measurements of flood severity for other locations, such as campgrounds
and among motorists (see Par type in Chapter V).

a) Flood severity is based on depth and the variable DV. Table C in Appendix C
offers many examples of subPar for which Graham’s criteria of depth or DV are violated
when comparing housing damages that are low or medium. Additional empirical work
might refine these guidelines.

b) The classification of subPar for which warning time falls between 0 and 15
minutes should be clarified.

¢) The current definition of flood severity understanding is subjective and difficult
to standardize without more guidance.
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Comparing Graham, 1999.to Previous Models

An understanding of the strengths and limitations presented above can give guidance
regarding what the Graham 1999 model can and cannot do for the analyst and how to avoid its
misapplication. An important second level of critique would be to compare the predictive
potential of the Graham 1999 model to previous models—in particular to the DeKay-McClelland
1993 model, which it is currently replacing. The comparison, however, is not straightforward
because Graham seeks to present the range of potential life loss rather than just a best estimate.
Moreover, Graham’s model is designed to be applicable to subPar and very high lethality events,
two applications for which Equation DM-2d was not intended.

Duane McClelland and David Bowles are completing a comparison between Graham’s
1999 model and Equation DM-2d, but we feel that it would be premature to publish the
preliminary results. By way of generalities, Graham’s 1999 model appears better suited to high
lethality events, but Equation DM-2d may have some advantages in other applications. We hope
to publish a full comparison in the near future.

Conclusions

In spite of what may appear to be a lengthy list of shortcomings, Graham’s model also
has a rather impressive list of strengths. Overall, there is an important need to continue
developing and refining better life loss models, but Graham’s model presents a credible and
defensible approach that can be used with confidence if one understands its limitations. For
example, due to its ease of use and empirical underpinnings, the model is a practical tool for
making a first-cut at life-loss estimation or for making a preliminary comparison of dams in a
portfolio.

If not used blindly, the model could also serve well in more detailed life-loss
assessments. However, until demonstrated otherwise, it should not be assumed that Graham’s
model offers a predictive advantage over Equation DM-2d when applied to lumped,
heterogeneous Par or heterogeneous subPar in flood settings that are not highly lethal. If,
however, one were to use many small subPar, Graham’s model would probably be preferable
since the underlying equations do not increase the proportion of life loss as Par becomes
smaller—an adverse characteristic of Equation DM-2d (see Chapter IV).

Similarly, in the narrow category of high-lethality events with zero warning time,
Graham’s model is preferable over Equation DM-2d because Equation DM-2d was not derived
with this application in mind. Nevertheless, estimates of life loss will likely be low if they
depend on Graham’s model and are applied to strongly homogeneous, high-lethality events with
zero warning time or warning time greater than 15 minutes. This shortcoming and similar
shortcomings could be reduced if Graham’s model were refined using more homogeneous
subPar than found in his 1999 data set.

The section on limitations here and for Equation DM-2d, combined with limitations to
Equation DM-2d presented in Chapter IV, suggest a danger inherent in both the Graham model
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and Equation DM-2d. Because both models are deceptively simple to apply, there is a risk that
the models will be used by those who don’t understand their limitations and biases because the
users lack familiarity with the underlying data sets. Graham’s model can find a valuable place in
modern risk assessment, but the model should not be used as a simple solution without the
results being evaluated and interpreted by a qualified expert.

Tabular Comparison

The methods for estimating loss of life have evolved not only with respect to their
methodology and the level of detail considered important, but also with respect to the variables
considered most influential or useful. Table 3.11 attempts to provide an overview, listing the
variables identified by each set of authors, the ones they selected for use in their models, and the
ones used for secondary refinement following an initial estimate. Since most of the models do
not allow for subjective refinement, the latter category applies only in limited cases.

A degree of interpretation was necessary in describing each variable since authors often
use different words to describe similar or identical concepts. It is also easy to overlook a variable
briefly mentioned by an author but omitted from his or her model. Every effort has been made to
be complete and accurate, but this list should be viewed as a representative overview that has not
been confirmed by the authors themselves.
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Predictive variables recognized as important by the authors of existing life-loss

models in dam safety
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Summary: Major Existing Approaches to

Life Loss and Their Limitations

Stanford/ FEMA model (modified by the Institute for Water Resources)

This approach uses an irregular grid to divide the inundation zone into subpopulations
based on land use, warning time, and depth of flooding. Individual structures are marked on a
map. A fatality rate is then assigned to each unique combination of depth, warning time, land
use, warning effectiveness, and other variables.

Shortcomings can be summarized as follows:
1. Rates of life loss must be subjectively estimated without an empirical basis.

2. The number of life-loss rates that must be estimated is equal to the number of uniquely
defined subPar, which grows exponentially as more characterizing variables are
considered.

3. Historically, life loss has not been primarily a function of depth in isolation from
velocities.

Brown and Graham (USBR)

Empirically based life-loss equations are a function of the size of the population at risk
and a trichotomous division of warning time. Initial estimates can be adjusted based on
subjective considerations.

Shortcomings can be summarized as follows:
1. Their trichotomous treatment of warning time risks subjective oversimplification.
2. The regression equations lack refinement.

3. The equations are intended to be applied to subpopulations but were developed using
global populations. Since one of the three equations is nonlinear with respect to
population size, the resulting life-loss estimates may vary depending on how a population
is subdivided.

4. These equations were based on only 23 flood events, each quite unique.

5. The equations can misestimate by a large margin, even within the original data set.
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Lee et al. (Corps of Engineers)

Using 47 flood events, Lee et al. (1986) developed a logit relationship in which a logit
transformation of the fraction of lives lost was regressed against the warning time, the peak depth
of the flood, and dichotomous treatments indicating whether or not the population was urbanized
and had experience with flooding.

Shortcomings can be summarized as follows:

1. They treated the individual as the unit for regression, causing events with large
populations to dominate the results.

2. Some of the floods were slow-rising, widely dispersed events, atypical of dam failures.

3. Since subpopulations were not considered separately, the peak depth of flooding did not
pertain to most people in the flood.

4. Current definitions of warning time do not describe the average warning time, the extent
to which a warning is propagated, the effectiveness of the message at mobilizing a timely
evacuation, informal types of warnings like sensory clues and shouts from neighbors, or
the time required to evacuate.

5. Since the events were treated globally, and since the equations are nonlinear with respect
to population, estimates of life loss will be different when summed over subpopulations
and will depend on how the global population is divided.

6. The equations can misestimate by a large margin, even within the original data set.

DeKay and McClelland (USBR)

After adding four new cases to the data set used by Brown and Graham (U.S. Bureau of
Reclamation, 1989), Dekay and McClelland (1993b) developed a regression equation using a
logit transformation of the fraction of lives lost against the population at risk, warning time, and
a dichotomous description of high or low flood forcefulness. Until recently, this was the most
widely accepted and applied equation.

For shortcomings see Chapter IV and the last three shortcomings under Lee et al. above.

B.C. Hydro (under development)

This model assigns a representative individual to every structure in the flood zone based
on census data and specifies the elevation of every structure and every unique path of evacuation
by foot. Using a computer algorithm and time steps, representative individuals are tracked as
they try to evacuate on foot until they either encounter the flood or escape. If the flood overtakes
them, probability distributions determine whether or not they are toppled and, if toppled, whether
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or not they drown based on the depth and velocity at each location. These probability
distributions are incorporated using Monte Carlo techniques and subsequently summed across
the population.

9.

Shortcomings can be summarized as follows:
The model accounts only for deaths due to drowning.

People who do not have average physical capabilities (children, elderly, disabled, etc.) do
not have the same probability distributions as a representative individual.

The model assumes all deaths occur by toppling while fleeing on foot. Most historical
flood-related deaths do not fall in this category.

The model does not allow for evacuation by automobile. Inclusion of this component
would only exacerbate other shortcomings of the model.

Buildings are treated no differently than unsheltered areas in the open floodplain,
ignoring their critical historic role in providing shelter.

The model currently ignores the benefits of trees and other refuges in the floodplain.

The model potentially propagates errors exponentially by multiplying highly uncertain
probability distributions and then summing across a large number of individuals,
progressively increasing bias.

The model requires unobtainable details. One must have confidence in a unique
evacuation pathway and rate curve for every residence, toppling distributions for every
combination of depth and velocity, and drowning distributions for every flow pattern
downstream of someone who topples. Such statistics are currently unavailable, cannot be
duplicated in the laboratory, and are highly case-specific, varying with such things as the
warning time, warning effectiveness, sensory clues, terrain, ground cover, turbulence,
sediment load, debris load, and experience with evacuation. Moreover, the dynamics of a
catastrophic flood wave are highly unpredictable, especially away from the channel
center, undermining the precision assumed for toppling and drowning distributions.

The model does not use historic rates of life loss to validate its results.

10. The model is cost prohibitive.

Graham, 1999

The analyst is intended to divide a population at risk in to subPar, classify each according

to a trichotomous division of flood severity, a trichotomous division of (official) warning time,
and a dichotomous division of flood severity understanding. The model then suggests an
expected (mean) value for the proportional life loss (P) for each of the 15 possible categories.
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The model also suggests a range of possible values for P. The model’s shortcomings arise
primarily because the subPar in the underlying data set were not highly homogeneous and the
criteria for the 15 subPar categories does not require that subPar be highly homogeneous. The
shortcomings can be summarized as follows:

1. The heterogeneity in the underlying data set calls into question the extent to which the
suggested values for modeling P apply to the unique characteristics of any given subPar.

2. Medium flood severity is inherently heterogeneous with respect to housing damages and
loss of shelter (see variable Ls in Chapter V). This heterogeneity, in combination with
large differences in life-loss rates between categories of flood severity, builds a form of
nonlinearity into the model that can cause life-loss estimates to vary dramatically based
on how Par is subdivided into subPar.

3. Graham’s definition and division of warning time limits the flexibility of the model and
potentially misses the most important aspects of both warning and evacuation dynamics.

4. Graham’s model is biased by the necessity to subjectively decide how many zero-life-loss
events to include or exclude when averaging historic fatality rates.

5. Graham’s model recognizes uncertainty, but it falls short of describing uncertainty with
probabilities.

6. The model would be strengthened if current guidance on how to apply the model were
refined and supported through additional empirical analyses.

Global Insights from Historic Models

To date, a truly satisfying theoretical model has not been completed, primarily due to a
lack of empirical underpinnings. Empirical models have evolved, growing from an effort to
capture life loss through a single regression equation to an effort to divide events into smaller,
more homogeneous components that can be compared to similar components. In this way, it is
possible to develop historical life-loss relationships specific to each set of similar components.
The summary of major existing approaches, above, provides a good global critique of current
model shortcomings. As for contributions, every useful dam-failure life-loss model addresses the
following components:

1. The probability of failure given assorted loadings. It is preferable to consider every
conceivable loading, breaking the loadings into ranges with similar consequences.

2. Flood routing that yields credible estimates of travel times, depths, and velocities. It is
preferable if these can be approximated at every point and not merely as large-scale
averages.

3. Quantification of Par. It is preferable to be able to subdivide this into subPar with
common attributes, describe the distribution of Par in the flood zone, and assign different
values to Par according to temporal variations in the time of day, week, and year.
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4. Warning time. It is preferable if this accounts for the detailed chain of events that must
occur before a message can first be disseminated on a mass scale. It is also preferable if
the analysis describes not only the difference in timing between the first warning and the
arrival of the flood, but also the rate of warning propagation, the extent to which the
warning penetrates a community, and the ability of the message to mobilize an
evacuation without causing panic.

5. Evacuation. It is preferable to identify not only the number of people who escape
flooding based on the warning time, but where the remainder are located when the flood
arrives and whether or not those locations provide a degree of safety.

6. Loss functions that describe the rate of life loss in every unit that has been defined,
whether this is on the level of Par, subPar, or locations within subPar. It is preferable for
these functions to be validated empirically so that they can be used with confidence.
Chapters IV and VII present desirable and undesirable characteristics of a life-loss
estimation model.
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CHAPTER IV

A DEEPER LOOK AT THE DEKAY-MCCLELLAND
MODEL

The DeKay-McClelland Equation

Equation DM-2d is popularly referred to as the DeKay-McClelland equation, or the D-M
equation, for short. It was first presented in Chapter III using a combination of symbols
originally used by DeKay and McClelland (1991, 1993b) and symbols used in Chapter V. In like
manner, equations L-3b and L-3a, the logit transformation and the inverse transformation,
respectively, were introduced using symbols favored by DeKay and McClelland (1991, 1993b)
or Lee et al. (1986). To avoid confusion and to prepare the reader for the modeling ideas
presented herein, symbols described in Chapter V will now be used exclusively.

Hence,
L
L(P)= (Transformation of P) = B = ln(%J =In Lai (L-3b)
_ L
Par
b_ exp@) 1 L

1+ exp(B) 1+ exp(—B)

L- Par (DM-2d)
I+ exp[2.586 + 0.440In(Par) -+ 0.759(W1) — 3.790(Fd) + 2.223(Wt)(Fd)

where P = proportion of lives lost among Par = L/Par,

L  =number of lives lost,
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Par = population at risk,
Wt = warning time, and

Fd = dichotomous forcefulness (0 or 1, with Fd = 1 meaning that 15 — 20% of the
buildings in the flood zone receives major damage or is destroyed).

A Comparison Of Approaches

Table 3.5 presents the data set used by DeKay and McClelland in 1993 after they updated
the variable estimates supplied by Brown and Graham (1988). Columns 7, 8 and 9 contain the
life loss predicted using equations DM-2d, DM-3b, and DM-4, respectively (see Chapter III).
Most of the remaining data come from DeKay and McClelland (1993b, Table I, p. 197). As a
reminder, equation DM-2d is the equation DeKay and McClelland (1993b) offered to compute
life loss—their final equation based on a logit transformation (equation L-3b). Equation DM-3b
was the best equation DeKay and McClelland (1991) could develop using least-squares linear
regression techniques without using a logit transformation. They produced the equation in 1991
before the case values were updated and before they added the final four events to the data set.
Equation DM-4 was the best equation DeKay and McClelland (1991) could develop without
using a logit transformation and while limiting themselves to the two independent variables used
by Brown and Graham (1988)—population at risk (Par) and warning time (Wt). It was also
developed using the truncated 1991 data set. The final column is the average of columns 7 and 8.

The purpose of including the final three columns is to assess the relative benefits of using
a logit transformation. The root mean square error (RMSE) for each equation is reported at the
bottom of the table. As can be seen, even though equation DM-2d is the only equation based on
this exact set of data, its RMSE is little better than that for equation DM-3b. A casual perusal of
the individual estimates also makes the equations appear comparable. Clearly the poorest
equation is equation DM-4, indicating that Force is an important concept to include in an
equation. The conclusion is that the logit transformation offers little inherent benefit apart from
constraining the proportion of lives lost among Par (P) to fall between 0 and 1.0, the primary
purpose for which it was chosen (DeKay and McClelland, 1991, 1993b).

Duplication of Results

As an exercise, a logit regression was performed on the data set in Table 3.5 using Excel.
As expected, the same equation was obtained as was reported by DeKay and McClelland
(1993b). A derivation of the equation DM-2d is presented later in this chapter.
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Implications of the Predicted

Life-loss Curves

To understand the trends in life loss predicted by equation DM-2d, it is helpful to graph
the proportion of lives lost among Par (P) against the population at risk (Par) for dichotomous
forcefulness (Fd) = 1 (Figure 4.1) and Fd = 0 (Figure 4.2) while holding warning time (Wt)
constant. Graphing P against Wt while holding Par and Fd constant produces a second set of
graphs (Figure 4.3 and Figure 4.4).
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Figure 4.1. Equation DM-2d: P vs. Par with constant Wt and Fd = 1.

85



0.1
0.09
0.08
Forcefulness, Fd =0
0.07 ¢

0.06 A

L/Par

0.05 &

P=

0.04 -

0.03

0.02 -

0.01 -

100 200 300 400 500 600 700 800 900 1000
Par (Population at Risk)

o 4

——Wt=0hr -==Wt=0.5hr Wt=1hr Wt=2hr

Figure 4.2. Equation DM-2d: P vs. Par with constant Wt and Fd = 0.
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Figure 4.3. Equation DM-2d: P vs. Wt with constant Par and Fd = 1.
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Figure 4.4. Equation DM-2d: P vs. Wt with constant Par and Fd = 0. P as a function of Par

Considering the figures sequentially, Figure 4.1 demonstrates a sharp nonlinearity of the
proportion of lives lost among Par (P) with respect to the size of Par at any given value for
warning time (Wt), especially when Par is less than 100. Figure 4 demonstrates the same pattern
when dichotomous forcefulness (Fd) = 0, only with less than one-tenth the life loss.
Conceptually, these curves suggest one or more implications:

1. Warnings are disseminated more effectively when Par is large (unlikely, since small
Par are often clustered closely together and for a large Par it takes more time to knock on
more doors).

2. Evacuation is more efficient when Par is large (unlikely, since small Par tend to be
closer to the hillside and do not need to worry about traffic congestion).

3. The effectiveness of rescue efforts is proportionally superior in larger population
centers (true, but not a dominant historical factor, as noted in Chapter VI).

4. Large Par tend to include areas that are either more distant from the river or more
distant from the dam than small Par with the same dichotomous forcefulness (Fd) value,
resulting in longer average warning times for a given initial warning time and lower
average levels of flood forcefulness that are masked by the dichotomous treatment of Fd.
This frequently takes the form of a relatively wide floodplain, where inundation is
shallow and velocities are smaller, located some distance from a dam up a canyon.

Based on this analysis, the last reason appears the most reasonable and bears greater
scrutiny. Essentially, it claims that the shape of the curves follows from limitations in the

87



variables rather than from any inherent property of Par size. If a Par is small—a house, a
campground, or a small canyon community—two things are likely to be true. First, the hillsides
are likely to form a steep, narrow valley causing the general level of flood forcefulness to trend
toward destruction over mere damage and toward the upper limits of Fd = 0 or Fd = 1. Second,
the warning time is likely to closely approximate the average warning time (Wtayg). If a Par is
large—a series of small communities over many miles of narrow valley or a larger city subject to
dispersed flooding across flat terrain—and the warning is disseminated more rapidly than the
flood’s rate of travel, opposite trends are likely from those above. Wt,,, will be notably greater
than warning time (Wt), a higher percentage of buildings will escape destruction than for small
Par, and flood forcefulness will trend toward the lower limits of Fd =0 or Fd = 1.

The significance of these insights should not be underestimated. Among those events
used to develop equation DM-2d, only the Teton failure was divided into subPar, and these
subPar were still not very homogenous. In light of the extreme nonlinearity in the proportion of
lives lost among Par (P) vs. Par and the method underlying development of the equation, DeKay
and McClelland (1993b) cautioned that their equation should not be applied on a subPar basis
(see Chapter III).

A simple illustration will demonstrate why. Assume that a dam at the head of long,
narrow valley fails, destroys phone cables, prevents word from getting out for nearly an hour,
and blocks access to the upper two-thirds of the valley. Wt = 0 minutes, Fd = 1, Par = 1,000
across six small communities in 10 miles, and L = 150. Deaths are concentrated in the first 3
miles because passing motorists and sensory clues propagate informal warnings down the valley,
making Wt,,, > 0 minutes. Also, virtually every structure is destroyed in the first 3 miles, a
larger percentage of structures are subject to only major damage in the center of the valley, and
the wave has attenuated to a 100-year flood in the wider tail of the valley, causing widespread
but minor damages. According to Figure 3 and equation DM-2d, P =0.138 and L = 138 as long
as at least 15 —20% of the people live in houses that are destroyed or experience major damage
and the centroid of Par is above the lowest third of the valley.

Now let us treat the six small towns as separate subPar, assuming Wt = 0 for the first four
communities that are inaccessible, but Wt =1 hr and 2 hr for the final two communities moving
downstream. Fd = 1 for the first four communities and Fd = 0 for the last two.

1. If the size of the communities, moving downstream, are Par; = 25, Par, = 75, Par; =
450, Pary = 50, Pars = 200, and Parg = 200, then L = 139.

2. If, instead, Par; = 50, Par, = 100, Par; = 350, Par4 = 150, Pars = 150, and Parg = 200,

then L = 161.
3. If, instead, Par; = 200, Par, = 200, Par; = 450, Par; = 100, Pars = 25, and Parg = 25,
then L =212.

4. If every two communities were treated as a subPar, then life loss in the final example
would be L = 172.

5. [Ifevery town in the final example were divided exactly in half based on upstream
and downstream neighborhoods, then the 12 subPar would yield L = 266.
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6. If the subPar were estimated based on each residence in the final example, life loss
would approach 700.

7. If Par barely qualifies for Fd = 1 because 75% of the residents live downstream
where damages are uniformly minor, then one distribution might be Par; = 50, Par, =
100, Par; = 50, Par4 = 50, Pars = 500, and Parg = 250, resulting in L = 88.

8. If this final redistribution is analyzed as a single, global Par, the greater damage
upstream still results in Fd = 1, but based on the distribution of Par, Wt = 1 hr, resulting
inL=28.

This example is telling. Depending on the size of the units to which equation DM-2d is
applied and the distribution of the population, the predicted value of L can range from about 8 to
about 700, or 0.8% to 70% of Par. Given the third distribution of Par presented above, the
estimate of L can range from 138 to 700 (14% to 70% of Par), depending exclusively on how an
analyst chooses to group Par into subPar. In the final distribution, the estimate of life loss was
increased 11 fold simply by dividing Par into 6 subPar.

As these examples illustrate, the estimate of L will increase dramatically as Par is broken
into smaller subPar, and L will change with identical numbers of subPar depending on how the
analyst groups the population. The impact of these changes varies depending on the size of Par,
on the size of the subPar (Par;), and on the impact any divisions have on the various warning
times (Wt;) and dichotomous forcefulness values (Fd;) associated with each Par;. It follows that it
is impossible to stipulate a standardized use of subPar that impacts every dam in a portfolio in a
consistent manner; and for a single dam, estimates can clearly be grossly inaccurate.

Moreover, the equation itself cannot be used with confidence on events that do not
closely resemble the dominant patterns in the original data set. Returning to our original
example, equation DM-2d will estimate L = 138 when it is applied to a 1000-member subPar
with Wt =0 and Fd = 1. But what if, instead of six villages spread over 10 miles, there was a
single town immediately below the dam? What if every structure was instantly destroyed, with
no major damages and no minor damages? Would life loss still be 138, or would it approach
1000? Historic failures like the ones at Vaiont Dam and the Stava Dams in Italy demonstrate the
latter.

DeKay and McClelland (1993b) recognized these shortcomings and suggested that Par
should not be divided unless population centers are dramatically different, and then no more than
2 subPar should be adopted. They also cautioned that the equation should not be applied to
situations without representation in the data set.

Returning to the initial assertion that the problem with non-linearity is an artifact of the
way the variables for warning time (Wt) and dichotomous forcefulness (Fd) are defined, a model
that defines subPar homogeneously with respect to concepts of warning and flood forcefulness
would avoid these problems. If so, such a model could be applied to any size of subPar the
analyst found convenient and to any type of failure for which representative subPar existed in the
data set. This has been attempted in Chapter VII.
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P as a Function of Wt

Figure 4.3 and Figure 4.4 demonstrate that equation DM-2d produces a relationship in
which the proportion of lives lost among Par (P) is also nonlinear with respect to warning time
(Wt) for any given size of Par and a fixed value for dichotomous forcefulness (Fd). The figures
are nearly identical except that the proportion of lives lost is an order of magnitude higher when
Fd=1.

The general pattern shown in these graphs makes sense. Rates of life loss will follow the
rates at which people are trapped by the flood. This rate drops as people successfully evacuate.
Evacuation rates will generally begin in a semi-linear fashion and then decrease with time since
those who remain are those who find evacuation most difficult.

Historically, there are often a few stragglers who refuse to evacuate, so it is appropriate
that the curves converge slowly toward 0 (see Chapter VI). However, it is likely that the curves
generated by equation DM-2d converge toward 0 too slowly. The basis for this assertion is
historical research and recognition that DeKay and McClelland did not quantify warning time
(Wt) with high precision.

As recorded in the fourth column of Table 3.5, Brown and Graham (1988) estimated Wt
using half hour increments or larger ranges. These estimates were necessarily vague based on the
sparseness of the historical record and the difficulty in representing Wt for spatially diverse Par.
For this reason, Brown and Graham chose regression equations based on only three increments
of warning time (Wt). DeKay and McClelland (1993a) modified some values of Wt based on
their own research, but for the most part they mechanically subdivided the ranges provided by
Brown and Graham so they could treat Wt as a continuous variable. When Wt was reported as
less than a certain number (Wt < 1 hr), they divided the upper limit in half; when only a lower
limit was reported (Wt > 2 hr), they added 50% to that lower bound; and when a range was
reported, they chose the midpoint of the range.

An attempt has been made during the current research to refine estimates of warning
time, including the average warning time (Wt,,¢), the warning provided by sensory clues (Sc),
and more precise estimates of the first official/formal warning (Wt). The results are presented in
Chapters 6 and 7 and in Appendix C.

Comparing P as a Function of
WtforFd=0and Fd=1

Figure 4.5 reminds us to distinguish between a model and the real-life situations it is
attempting to predict. When Wt exceeds about 1.7 hr, equation DM-2d predicts lower rates of
life loss when the flooding is more severe (Fd = 1) than when it is less severe (Fd = 0). However,
the differences are minor and both curves converge to essentially the same values. If viewed
from this perspective, the model implies that after 1.7 hr, evacuation approaches a standstill and
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fatalities occur among the holdouts, through convergence, or due to unusual circumstances that
are largely unrelated to flood forcefulness.

Confidence intervals

Michael DeKay computed 95% confidence intervals for each of the data points the
equation produces when applied to the underlying data set. These were reported by the
ANCOLD Working Group on Risk Assessment (Australian National Committee on Large Dams,
1998) and are presented in columns 6 and 8 of Table 4.1. Figures 4.6, 4.7, and Figure 4.8 present
the intervals graphically according to the size of each range. As can be seen, the intervals are
extremely large and often exceed 10 times the size of the life-loss estimate itself.

These confidence intervals suggest that the predictive authority of equation DM-2d is small. In
most cases, the true mean life loss for a given event has a 95% chance of falling anywhere
between about 0 and a value 10 — 20 times greater than the estimate produced by the equation.
The sensitivity of the proportion of lives lost among Par (P) to the size of the range is greatest
when dichotomous forcefulness (Fd) = 1; i.e., when life loss is typically of greatest concern.
Clearly, a model with smaller confidence limits would be desirable, but in the absence of such a
model, it may be preferable to express the expected value from the DeKay-McClelland equation
as a range, or as a probability distribution, rather than as a point estimate.
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Table 4.1. Table of flood wave events underlying equation DM-2d, variable values, historic life
loss, estimated life loss using equation DM-2d, and 95% confidence intervals for
each estimate (Australian National Committee on Large Dams, 1998)

o = o = g =

2 2 2|8 |5 |52 s

A v SRS 25 |23 |85

= |2 |7 |82 |43 |52

= 1E |8z |RE|SE|=E

£ |2 |Z|2 |EZ |33 |E=

5 |28l |9F |52 |[CF

2T |EE |28 |E-|s5 (32|55

Dam Failure/Flash Flood Events Lalz2 |2 |22 |2E &5 |2 E
Bushy Hill Pond Dam, CT, 1982 400 251 0 0 0 0 6
Bear Wallow Dam, NC, 1976 8 o 1 4 0 5 8
Little Deer Creek Dam, UT, 1963 50 o o 1 0 1 10
Centralia, WA, 1991 150 of o 0 0 1 20
Denver, CO, 1965 (South Platte River) 10000{ 3.17| O 1 0 1 24
Northern NJ, 1984 25000 3l 0 2 0 2 45
Mohegan Park Dam, CT, 1963 1000 0 O 6 0 4 61
Teton Dam, ID, 1976 (Rexburg to American Falls) | 23000] 2.25| 0 4 0 4 67
Lee Lake Dam, MA, 1968 80 0 1 2 2 26 71
Swift and [Lower] Two Medicine Dams, MT, 1964 2501 0.75| 1 28 0 8 88
Allegheny County, PA, 1986 2200 0o 0 9 0 100
Lawn Lake Dam, CO, 1982 5000 05 0 3 0 5| 104
Laurel Run Dam, PA, 1977 150 o 1 40 3 40 128
Austin, TX, 1981 1180 1 1 13 1 9 137
Kelley Barnes Dam, GA, 1977 2501 0.25] 1 39 2 31 170
Baldwin Hills Dam, CA, 1963 16500 1.5 1 5 0 9 200
Stava Dam, Italy, 1985 300 o 1 270 5 64| 243
Teton Dam, ID, 1976 (Dam through Wilford) 2000 0.75 1 7 2 25| 326
Texas Hill Country, 1978 2070{ 0.75| 1 25 2 25| 333
Vega De Tera Dam, Spain, 1959 500 0 1 150 7 89| 387
Kansas City, MO, 1977 2380 0.5 1 20 4 57| 640
Shadyside, OH, 1990 884 of 1 24 9l 127| 646
Big Thompson, CO, 1976 2500 0.5 1 144 4 59| 662
Buffalo Creek Coal Waste Dam, WV, 1972 5000 0.5] 1 125 6 87 1074
Black Hills, SD, 1972 17000 0.5 1 245 10| 174 2538
Malpasset Dam, France, 1959 6000 o 1 421 23 406 3438
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Figure 4.5. Equation DM-2d: The curves with Fd = 1 and Fd = 0 cross at about Wt = 1.7 hours.

90

80 +

70

60 +

50

40 +

30 +

20 +

Life Loss: 95% Confidence Intervals

10 +

S T S N T M S N R A

Bushy Hill Bear Wallow Little Deer  Centralia, Denver, CO, Northern NJ, Mohegan Teton Dam, Lee Lake Swift and
Pond Dam, Dam, NC, Creek Dam, WA, 1991 1965 (South 1984 Park Dam, ID, 1976 Dam, MA, [Lower] Two

CT, 1982 1976 UT, 1963 Platte River) CT, 1963  (Rexburg to 1968 Medicine
American Dams, MT,
Falls) 1964

‘ Upper Limit  Lower Limit =Predicted Value‘

Figure 4.6. The 95% confidence intervals for data points from Table 3.5 for which the range
does not exceed L = 90. The tick marks indicate the estimate produced by equation
DM-2d.
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Figure 4.7. The 95% confidence interval for data points from Table 3.5 for which the range
exceeds L = 100 but does not exceed L = 400. The tick marks indicate the estimate
produced by equation DM-2d.
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Figure 4.8. The 95% confidence interval for data points from Table 3.5 for which the range
exceeds L = 600 but does not exceed L = 3,500. The tick marks indicate the estimate
produced by equation DM-2d.
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Implications of the DeKay-McClelland Logit Transformation

Derivation

It is helpful to review and expand upon the derivation of equation DM-2d in Chapter III.
The linear form underlying this equation is

L(P) = h{l P P] = a + bIn(Par) + c(Wi) + d(Fd) + e(Wt)(Fd) (DM-2)

Following a standard least squares regression on the data set used in 1993 and fitting
equation DM-2 with the resulting coefficients produces equation DM-2a.

P Pj = —2.586 — 0.440In(Par) — 0.759(Wt) + 3.790(Fd ) — 2.223(Wt)(Fd) (DM-2a)

L(P) = h{l

To isolate P, one can take the exponent of both sides,

% = exp|[— 2.586 — 0.4401n(Par) — 0.759(Wt) + 3.790(Fd) — 2.223(Wt)(Fd))

multiply both sides by 1-P, isolate terms with P on one side of the equation, and factor out P to
yield equation DM-2b:

" Par 1+exp[-2.586—0.440 In(Par) — 0.759(Wt) +3.790( Force) — 2.223(Wt)(Force) ]

L exp[— 2.586—-0.440 In(Par)—0.759(Wt) +3.790(Force) — 2.223(Wt)(F0rce)] (DM-2b)

Recognizing that
A1 1
I+A 1 147l

A
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DM-2b reduces to

L 1
Par 1+ exp[2.586 + 0.4401In(Par) + 0.759(Wt) — 3.790(Force) + 2.223(Wt)(F0rce)]

Isolating L leads to equation DM-2c¢

Par

L= (DM-2c¢)
1+ exp[2.586 +0.4401In(Par) + 0.759(Wt) — 3.790(Force) + 2.223(Wt)(F0rce)]

This equation can then be modified by pulling the first two terms in the exponent out front as
(e*%) (") and simplifying to yield the final equation DM-2d.

Par

L= 0.440 (DM-2d)
1+13.277(Par®**)exp|0.759(Wt) — 3.790(Force) + 2.223(Wt)(Force)]

Logistic regression Targeting
L(P),notPorL

While the DeKay-McClelland equation has a R* value of 0.840' (DeKay and McClelland,
1993b), it is important to remember that this value measures the fraction of the variability
explained by the regression equation for the transformed variable,

" The R? value for the corresponding regression equation derived using the shorter, unmodified 1991 data
set was: 0.9357 (DeKay and McClelland, 1991).
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L(P) = h{l P PJ (L-3b)

where P = L/Par. This R? does not address the ability of the equation to predict life loss itself or
the proportion of lives lost. The implications are important because during regression, as Par
grows, the equation can overestimate or underestimate the loss of life by ever greater amounts
with minimal impact on the final choice of equation coefficients.

To explain this, pretend for a moment that the left-hand side of equation DM-2 is P
instead of L(P). During the least-squares analysis, it is not the absolute magnitude of life loss that
is considered but the ratio of life loss to population at risk. The regression algorithm seeks to
minimize the sum of the squares of the residuals, which are here defined as the difference
between the ratio L/Par predicted by the equation and the true value in the data set. A large
residual in terms of L might be a very small residual in terms of P if Par is large. When
comparing two cases, it is possible for one to have a smaller residual with respect to P while
having a much larger residual in terms of L, shifting the resulting predicted value in the opposite
direction than it would go if L were the dependent variable.

Using an example from the data set, consider the two cases presented in Table 4.2. Bear
Wallow Dam had Par = 8 and L = 4, resulting in P = 0.5. Equation DM-2d predicts a loss of life
of 4.574, resulting in P = 0.572. The residual in terms of L is 0.574 and the residual in terms of P
1s 0.072. Now consider the Big Thompson flash flood. Par was considered 2,500, the actual L =
144, and the predicted L = 59. The actual and predicted P-values are 0.0576 and 0.0236,
respectively, producing a P-residual of —0.034. Ignoring the sign of the terms, the residual based
on P is actually better than that for Bear Wallow by about half (0.034 vs. 0.072), but the residual
for L is 85, or nearly 150 times that for Bear Wallow (85 vs. 0.574).

The actual regression dynamics are more complicated than this because the left side of
equation DM-2 is not P but a transformation or function of P. This can potentially make the
residuals with respect to L even less important.

Consider two Par of comparable size presented in Table 4.3. On paper, the failures of Lee
Lake Dam and the connected dams at Stava were quite similar in the sense that Wt = 0 and Fd =
1 for both of them and their Par values were close enough for the nonlinear effects in Figure 3 to
be relatively small. In reality, however, the failure at Stava was one of the worst dam disasters
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Table 4.2. An example of the effect of using the ratio P as the dependent variable in the
regression equation in place of L when one Par is large and another is small

Actual | Estimated Residual
Failure Event | Par L L Residual Using P Using L
Bear Wallow 8 4 4.574 4.574/8 —4/8 =0.072 0.574
Big 59/2500 — 144/2500 =

2500 | 144 59 -85

Thompson -0.034
By what percent does the absolute value of
the larger differ from the absolute value of 112 % 14,700 %
the smaller?

Table 4.3. An example of the effect of using the ratio P as the dependent variable in the

regression equation in place of L when Par are comparable, but L have different

orders of magnitude

Actual | Estimated L(P) P L
Failure Event Par L L Residual | Residual | Residual
Lee Lake Dam 80 2 26 -2.933 0.30 24
Stava Dams 300 270 64 -3.503 -0.69 -206
By what percent does the absolute value of the larger 0 o o
differ from the absolute value of the smaller? 19% 130% 758%

on record while the failure at Lee Lake was unexceptional among floods with life loss. Hence,
the actual loss of life in each case was very different from the predicted value and in opposite
directions.

What is important is the impact of choosing the transformation of P, L(P), instead of P or
L as the dependent variable. In order to minimize the sum of squared residuals, the regression
algorithm seeks to balance high and low misestimates in a way that the majority of their absolute
values tend to cluster in the same range. As indicated in the last row of Table 4.3, this has been
accomplished with respect to the dependent transformation, L(P). The residuals differ in
magnitude by only 19%. However, this is at the expense of balance in P, which differs by 130%,
and almost total disregard for the values of L, with one residual being 7.58 times larger than the
other. As a consequence, rather than a true difference of 268 fatalities between the events, the
equation predicts a difference of only 38 without sacrificing a high R? value in the transformed
domain.
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Basis for Error in Ranking

Risk within a Portfolio of Dams

The logit transformation will be explored in more detail shortly, but for now it should be
noted that the biases generated by the form of equation DM-2 have serious ramifications for dam
safety risk analysis. The cost to save a (statistical) life is the difference between the annualized
cost of a safety remediation measure and the annualized economic benefit of risk reduction to
property, divided by the incremental reduction in the annualized risk of life loss brought about by
the safety remediation. As such, it is a measure of the cost-effectiveness of a risk-reduction
alternative that can be used to prioritize remedial measures across a portfolio of dams. Assume
for a moment that the Stava Dams and Lee Lake Dam had equal probabilities of failure and that
the cost of remedial measures and economic risk reduction to prevent these failures would have
been identical. Furthermore, ignore for a moment alternative failure scenarios and safety
measures to reduce life loss during a failure event, such as early warning systems and emergency
action plans. Under these constraints, the comparative cost to save a life between these two dams
would have depended solely on the number of fatalities expected from each failure. Based on the
logit model as illustrated in Table 4.3, the dams at Stava might have been prioritized for safety
improvement just ahead of Lee Lake Dam within a portfolio of dams: only 2.5 times as many
people would have been expected to die at Stava, rather than the 135 times as many that actually
perished.

One can take this a step further and consider the more realistic case where the probability
of failure is different for each dam in a portfolio. If the Stava dams had a probability of failure of
2*107 per year, and Lee Lake Dam was just slightly more likely to fail at 6¥107 per year, their
respective annualized life-loss risks would be:

Stava dams: (2*107/year)*(64 lives) = 0.00128 lives/year
Lee Lake Dam: (6%10”/year)*(26 lives) = 0.00156 lives/year.

Such levels of annualized life-loss risk are generally considered unacceptable, but Lee Lake
would be concluded to have a higher annualized life loss than Stava even though the true
annualized life-loss risk was 45 times greater, as indicated below:

Stava dams: (2*107/year)*(270 lives) = 0.0054 lives/year

Lee Lake Dam: (6%10”/year)*(2 lives) = 0.00012 lives/year.
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To show that this is not an isolated danger, consider the Shadyside” flash flood in 1990.
As for the Stava dams and Lee Lake Dam, Wt = 0 and Fd = 1. With a Par three times larger than
at Stava (Par = 884), the predicted life loss at Shadyside rises to 127, but L was actually only 24.
With an L-residual over 100, this is the largest overestimation in the data set. Treating Shadyside
as a dam failure, the probability of failure at the Stava dams would have to be twice as great as
for Shadyside before Stava would get ranked as an equal hazard. Given twice the annualized life-
loss risk of failure, the true historical annualized life-loss risk at Stava would have been 2,250%
greater than at Shadyside: (2*270/24)*100%.

Significantly, given equal probabilities of failure, Shadyside would also be ranked ahead
of the Buffalo Creek coal waste dam failure, the Big Thompson flash flood, and the Vega de
Tera Dam failure in terms of annualized life-loss risk. In each case, the true historical annualized
life-loss risk for these events was an order of magnitude greater than at Shadyside. The five cases
under discussion are summarized in Table 4.4, where they have been ranked in ascending order
based on predicted annualized life-loss risks. The relative historical annualized life-loss risks are
presented in column 5, where the annualized risk under equal probability of failure is given as a
percentage of the dam perceived to be most at risk.’ Notice that the true annualized life-loss risk
of the fifth-ranked dam would be 6 times greater than that of the first-ranked dam. The
annualized risk for the fourth-ranked dam would be more than 11 times greater. Par is shown in
the final column to demonstrate that this danger holds across the spectrum of population sizes.

Bias Due to the Nonlinearity of
L(P) with Respectto P and L

Now that the importance of the form of the regression has been demonstrated, the
mechanics of the logit transformation should be explored. Figures 4.8 and 4.9 illustrate the
general behavior of the function L(P) = In[P/(1-P)].

As illustrated in Figure 4.8, the function L(P) = In[P/(1-P)] is symmetric about 0.0,
approaching - as the proportion of lives lost among Par (P) approaches 0 and o as P approaches
1. This logarithmic shape grows rapidly in the tails with the result that a very small change in P
will result in a very large change in the residual, L(Pestimated) — L(Phistoric), When P is very small or
very large. This is demonstrated in the relatively parabolic shape to the curve in Figure 4.9.
There, the residuals of the transformations

? There were actually flash floods on three watersheds that caused loss of life. Two of the rivers—Pipes
Creek and Wegee Creek near the town of Shadyside, Ohio—were combined by DeKay and McClelland 1993a into a
single event with a single Par.

3 In this case, a flash flood.
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Table 4.4. Selective comparison of perceived annualized risk based on estimated L and true
annualized risk based on historical L

Historical
Annualized Risk
Given Equal
Likelihood of Dam
Estimated | Actual | Failure Compared | Residual
Failure Event | Rank L L to Top Ranked Using L | Par
Shadyside 1 127 24 100 % 103 884
Vega de Tera 2 89 150 625 % -61 500
Buffalo Creek 3 87 125 521 % -38 5,000
Stava 4 64 270 1,125 % -206 300
Big Thompson 5 59 144 600 % -85 2,500
15.0000
10.0000 - 4
5.0000 -
g
%‘ 0.0000 ‘ ‘ : :
" 0.6 0.7 0.8 0.9
o
= 50000 -
-10.0000 1
15,0000 |
P = L/Par

Figure 4.8. Graph of the function L(P).
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Figure 4.9. Graph demonstrating the unequal weight given to residuals L(Pestimate) - L(Phistoric)-
Given evenly spaced values for P, the residuals of L(P) will be much larger when P
1s near O or 1 than near 0.5.

L(P;) — L(P;) are graphed against the midpoint of uniform increments of P, — P,. The arms
increase arbitrarily fast depending on the size of the P-increment chosen, but for a given
increment, the rate of increase steadily increases nearer P = 0 and P = 1. Thus, events for which
the ratio L/Par is very small or very large dominate the regression as the algorithm seeks to
minimize the sum of the squared residuals. The result is a biased regression equation.

Consider two data points with Par of 1,000. Event A had L =2, P =0.002, and L(P) = -
6.2126; Event B had L =150, P =0.150, and L(P) =-1.7346. Now let us say the regression
equation predicts L = 1 for Event A, resulting in P =0.001 and L(P) =-6.9067. Thus, the residual
for Event A, based on L(P), is -0.694.

Now the regression algorithm seeks to “balance” residuals—allowing some to grow in
order to reduce others—to minimize the sum of their squares. In the name of balance, what
predicted L value will yield the same residual of 0.694 for the second event with P =0.15? There
are two options, since squared residuals are insensitive to sign. It can underestimate the life loss
by 69 or it can overestimate life loss by 111: L =81 and L = 261. Both yield logit residuals with
absolute values of 0.694.

Of course, it is unlikely that exactly balancing these two residuals will minimize the sum
of squares from a larger data set, but notice two things. First, an underestimate in L. of 69 has the
same effect on the L(P)-residual as an overestimate of 111. As illustrated in Figure 4.9, for a
given change in L(P), one will always have a larger change in P when moving toward P = 0.5
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than when moving toward P = 0 or P = 1. This becomes more pronounced the closer P comes to
0 or 1. Hence, L = 3.99 also yields a residual of 0.694 for Event A, even though it is twice as far
removed from L =2 as L =1.00 is from L = 2.

Second, the variance in L balloons as P approaches 0.5. The range 1 <L <4 for Event A
is bounded by the same residuals as is 81 <L <261 for Event B.

Contrary to the independence of a single data point, when a data set is dominated by
values that fall on one side of 0.5 or the other, prediction of P-values between 0.5 and this
dominant set will tend to be skewed in the direction of the set. The reason for this is that near 0
or 1, a small error in P produces a very large error in L(P). Thus, to minimize the overall
deviations in L(P), the regression algorithm biases the equation to predict the most extreme
values of P the most accurately, even if this requires skewing less extreme estimates in the
direction of the most extreme values. The extreme values, in turn, will tend to skew toward 0.5,
although these deviations will be small.

It is important to remember that “extreme values” near 0 or 1 and “less extreme” values
closer to 0.5 are relative concepts: It is their relative magnitudes that matter, not their absolute
magnitudes. Also, the magnitude of L matters only as it relates to Par through P.

Consider events number 1, 16, and 27 in Table 4.5. Bushy Hill Pond Dam had Par =400
and L = 0. Because the log of 0 is undefined, by convention L is set equal to 0.5 and P =
1/(2*Par). In this case, P = 0.0013 and equation DM-2d estimates L = 0.32, resulting in P =
0.0008 and an L(P)-residual of 0.44.

In contrast to this excellent estimate of L, equation DM-2d underestimates L by 71
people for the Black Hills flash flood. Nevertheless, the L(P)-residual is actually smaller in this
case (0.35) because the P-values are an order of magnitude larger (Phisoric = 0.014, Ppredicted =
0.010). The absolute magnitude of the P-values is still small—despite the fact that this event had
the third largest life loss in the data set—because Par is very large (17,000).

If P were a less extreme value near 0.5, L would be allowed to vary even more.
Specifically, if L = 8,500 while Par = 17,000, such that P = 0.5, L could be estimated anywhere
between 6,660 and 10,340 without exceeding the L(P)-residual of 0.44 for Bushy Hill Pond.
More to the point, the algorithm treats a life-loss range of 0.32 — 0.78 when Par =400 and L =
0.5 as equivalent to a life-loss range of 6,660 — 10,340 when Par = 17,000 and L = 8,500: The
L(P)-residual for every endpoint has magnitude 0.44.

By contrast, when Par is very large and L is small such that P is very small, the L(P)-
residuals grow rapidly with small changes in L. Equation DM-2d underestimates
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life loss for the Kansas River flood by less than 11 fatalities. However, a very large Par (58,000)
combined with a small number of deaths (11, estimated at 0.2) produces very small values for P
(Phistoric = 0.000189, Ppredicted = 0.000003). The L(P) residual in this case is 4.00, more than 5
times greater than for Bushy Hill and the Black Hills combined.

To emphasize the previous points, the smaller P becomes, the more likely L will be
overestimated. For Kansas River with Par = 58,000, L = 11, and P = 0.00019, the ranges 0.2 — 11
and 11 — 594 are both bounded by an L(P)-residual of 4.00. Also, as P becomes smaller, the
regression algorithm tolerates less and less deviation in L. At P = 0.00019 and an L(P)-residual <
4.00, Kansas River allows 0.2 <L <594, or a spread of nearly 600. Under identical conditions
except P = 0.5, Kansas River would allow 1,043 <L < 56,956, or a spread of nearly 56,000.

Bias Due to Trends

in the Data Set

Considering the values in Table 4.5, P-values are generally less than 0.5 (only Stava Dam
has a P-value greater), dam failures with low life loss tend to have very low P-values, and
failures with large L-values tend to have P-values relatively closer to 0.5. Thus, based on the
reasoning above, one would expect equation DM-2d to predict events with small L-values fairly
accurately but with a bias towards overestimation. Events with L-values in the midrange might
defy an easy trend, but events with large L-values would most likely show a clear trend toward
dramatic underestimation.

One might also expect equation DM-2d to predict P more accurately when Par is large
than when Par is small. This follows from the tendency in the data set for large Par to have the
smallest values for P—the basis for the nonlinearity displayed in Figure 4.1 and Figure 4.2. This
also leads to a tendency to put the greatest weight on those events that are least hazardous (large
Par and small expected life loss). As such, equation DM-2d is least credible when applied to
high-hazard events or to small Par, either of which is likely to produce relatively large values for
P.

Not surprisingly, all of this describes the pattern reflected in the residuals with respect to
L in the data set. Indeed, without undergoing a rigorous analysis of variance (ANOVA), clear
trends are readily apparent from a perusal of Table 4.5. The events are sorted in ascending order
by the number of lives that were lost, as shown in column 5. Columns 3 and 4 duplicate these
values, but column 3 lists only those events for which the equation’s estimates are high (P moves
toward 0.5), and column 4 lists only those events for which the equation’s estimates are low (P
skews toward the most extreme values). Columns 6 and 7 list the estimates for L produced by
equation DM-2d. Columns 8 and 9 present the residuals with respect to L and L(P), respectively.
Various footnotes and mean values are found at the bottom of the table.
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Columns 5, 7, and 8 indicate that prediction levels generally fall within a few lives of the
true value when historic fatality rates were less than 10.* Of the 15 predictions in this range 67%
are overestimates, skewing P toward 0.5. Of the 12 floods with L < 5, 75% are overestimated.
The magnitude of prediction error in these ranges is small—often indiscernible after rounding.
The arithmetic average error is 2.2 over the 15 cases that comprise the lower half the data set
with respect to historic life loss.

Predictions for floods with L = 10 — 40 show a fair bit of scatter. There are eight floods in
this range. L is overestimated for half and underestimated for half, though the magnitudes of the
over-predictions dominate. Unlike failures with L below 10, in this mid-range the L-residuals are
characterized by large variance. While the arithmetic mean L residual is 8.8, the average absolute
magnitude of the residual (ignoring signs) is 23.1.

There is no way to judge the transition point between dam failures within the mid-range
and high-range of life loss since no data exist for failures with 41 <L < 124. However, the six
remaining failure events all fall within the high range and L is underestimated in every case,
usually by a large margin. Considering all events with actual L greater than 25, the arithmetic
mean L-error is -56. This increases to -80 for the six worst catastrophes. For these six, only 59%
of the actual life loss is recognized by equation DM-2d.

A quick perusal of the largest and smallest Par indicates that errors in P are generally
much smaller when Par is large. Likewise, P and L are most accurate when these values are
smallest, meaning the equation is least accurate in predicting L. when large numbers of people are
expected to die.

As a global summary of the entire data set, 14 cases overestimate loss of life by an
average of 13.6 lives while 15 cases underestimate loss of life by an average of 35.2 lives. There
are two cases in which an overestimation of L reflects an underestimation of the logit variable
L(P). In both cases the actual L was zero and the value used for P is calculated by convention as
P = 1/(2*Par) (DeKay and McClelland, 1991).

All of the characteristics discussed in this chapter would be expected to hold true when
the equation is used to estimate future outcomes.

* A variation of at least 1-3 might be expected at all levels of life loss due to convergence deaths or other
isolated fatalities which might be considered unique or random in nature.
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Shortcomings of the DeKay-McClelland Model as Currently Applied

Before discussing the shortcomings in detail, it bears repeating that the DeKay-
McClelland model represents the most rigorous empirical approach to date. As such, it was the
preeminent life-loss method until recently and its authors should be commended for their
contributions to the state of the art.

The model’s most problematic shortcomings arise not from any error in statistical
analysis, but from a misunderstanding of life-loss dynamics and misuse of the model by dam
safety risk professionals. Neither author had a background in fields related to dam safety,
hydraulics, hydrology, or emergency management. In their words, “our approach is primarily
data-driven rather than theory driven. We try to be reasonable in our choice of variables and the
form in which we express them, but we adhere to no particular theory regarding the causes of
flood fatalities” (DeKay and McClelland, 1993b, p. 193).

The most obvious contradiction between the model and true life-loss dynamics is that the
model treats an entire Par as a single entity with a single warning time and a consistent mix of
damages to structures. Recognizing the logical dissonance that this causes, dam safety risk
professionals have tended to apply the equation to more homogeneous subpopulations, isolating
canyon communities from valley communities and those far from the dam from those close to
the dam. However, the more the model is applied to homogeneous subpopulations, the more the
approach violates the assumptions governing its derivation and the more suspect the results
become.

This and other foundational weaknesses have been explored in great detail in the
preceding sections. Hence, this section is intended only as an outline summary, with additional
insights that were derived through historical analysis and reasoning. To keep the following
comments brief, it is assumed that the reader is familiar with the contents of this chapter and the
section on the DeKay-McClelland model in Chapter III. Support for additional insights is
provided in the subsequent chapters and appendices.

Life Loss is Nonlinear

with Respect to Par

1. An application of the model to subPar increases the estimate of L.

2. Every unique division of subPar will yield a different estimate of L.
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The Model was Developed Using

Heterogeneous Par rather than

Homogeneous Subpar

1. The current practice of applying the model to subPar applies the equation to
populations unlike those in the data set. This, in turn, produces unreliable results.

2. Warning time (Wt) and dichotomous forcefulness (Fd) do not represent the average
conditions experienced by individuals within a global population. As such, Wt and Fd have
limited value when one compares two or more dissimilar events.

3. Wtand Fd do not represent or quantify those who are most at risk.

4. Making assumptions about evacuation rates based on the interplay between a point
value like Wt and L is potentially misleading and can make it appear that evacuations proceed
slowly when, in fact, the individual warning times (Wt;) may be very small or nonexistent for
those who perish.

The Model Uses Wt rather than

Excess Evacuation Time (E)

1. The first official/formal warning time (Wt) is generally larger than the average
warning time from any source (Wt,y¢) and takes no account of the dissemination rate
or the percentage of people reached.

2. Wt does not describe whether those who receive a warning are most at risk or least at
risk.

3. Wt takes no account of the urgency or believability of the message. A NWS scrawl at
the bottom of a sitcom does not have the same potential to mobilize an evacuation as
a fireman at the door or the fearful sight and sound of an approaching wall of water.

4. Wt takes no account of the time of day or night, whether families are together or
separated during work hours, and other factors that affect a population’s response
patterns.

5. Wtis independent of the time required for evacuation.

6. In summary, it is the excess evacuation time (E)—the time required to clear the flood
zone minus the time available to clear the flood zone—that determines whether
people are likely to escape a flood. Wt is independent of the distance to safety, the
mobility of the population, the time of day or night, the urgency of the message, and
other factors that determine the representative time needed for evacuation. As such,
Wt, by itself, has limited usefulness when comparing dissimilar events.
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Together, these factors mask the benefits of improved warning dissemination and urgency while
emphasizing only the timing of the first notification.

The Model Makes No Distinction
Between Day And Night

1. Darkness and sleep can dramatically hinder the ability of a population to detect
sensory clues, share them with neighbors, and prepare their families to run for safety.
This is most important when Wt is small. Since the data set underlying the model is a
mix of day and night events, the regression equation cannot be fully trusted to apply
to either.

As A Dichotomous Variable,
Fd Is Too Coarse For Refined
Estimates Of Life Loss

1. It is unrealistic to expect the same rate of life loss regardless of whether 20% or
100% of the buildings receive at least major damage. Indeed, life loss is likely to grow
faster than the rate of damages because a higher damage rate implies a flood with greater
depths and velocities at every structure.

2. Based on the events used in developing the equation, the model implicitly assumes
that every Par is sufficiently heterogeneous to force the rate of housing damages toward
the lower limits of Fd = 0 and Fd = 1. As such, the model “fits” only a limited type of
event/population.

a. The model does a poor job of predicting life loss for its own data set when a case
falls outside of this expected range—that is, when damages are extreme.

b. The equation is unsuited for application to Par or subPar with homogenous
damages. This is in direct contradiction to the way analysts prefer to use the equation,
since they tend to isolate communities closest to a dam from those downstream.

c. The equation is unsuited for application to the most lethal flood events, such as
the failure at Vaiont, Italy.
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According To Fd, The Same Number Of Lives
Should Be Lost When A Building Receives
Major Damage As When It Is Destroyed

The model obscures the large difference in life loss when buildings are obliterated
compared to when they retain a form of haven. Historically, this difference is so pronounced that
this oversight may be the model’s greatest shortcoming.

Sometimes Par Is Agoregated

Across Many Watersheds

1. This kind of flooding is atypical of a dam failure.

2. Life loss is usually limited to the most dangerous reaches or watersheds, but because
Par is expanded to include watersheds with milder flooding, housing damages tend
toward the lower limits of Fd = 0 or Fd = 1 and estimates of P conform accordingly
(see above).

3. Examples from the data set (see Table 4.5): Allegheny County flash floods, Black
Hills flash floods, Kansas City floods, Northern New Jersey flash floods, Texas Hill
Country flash floods, and Shadyside flash floods (although for Shadyside, Wegee
Creek and Pipe Creek were so similar they could be combined with no dilution of
Fd).

Sometimes L. Has Little

Relationship To Par

1. By combining subPar into a single Par, Par can be quantified in a way that has little or
no relationship to the number of people who are most at risk and the nature of the
flooding they experience.

2. Examples (see Table 4.5):

a. All nine deaths in Allegheny County occurred among a small band of motorists
traveling on a single stretch of road along Little Pine Creek. Nevertheless, DeKay and
McClelland (1993a) quantified Par based on the number of residences that were
damaged in every watershed in the county.

b. During the Austin, Texas, flash floods in 1981, 11 out of 13 deaths occurred to
motorists at low water crossings. The crossings were located in five different
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watersheds, they were mostly distant from areas with housing damages, the motorists
were not evacuees, and in many cases the victims did not even live in the state.
Nevertheless, DeKay and McClelland (1993a) quantified Par based on the number of
residences that were damaged—residences that were mostly evacuated before the
flooding reached lethal proportions.

c. None of the 25 deaths during the Kansas City floods involved people trapped in
buildings because the water rose slowly enough for people to walk away without
hurrying. The victims were those who faced the flood after it reached dangerous
proportions—motorists, pedestrians, people who came to watch the flood, and people
who experienced fatal medical emergencies like heart attacks. Nevertheless, DeKay
and McClelland (1993a) quantified Par based on the number of residences that were
damaged across many different watersheds.

2. Examples like this argue for the importance of treating different categories of Par or
subPar uniquely. That is, subPar in campgrounds, automobiles, boats, homes, or other
locations may not all share the same traits with respect to warning dissemination,
evacuation, flood exposure, and life loss.

Some Variables Were Assigned Values

Inconsistent With The Best Evidence

This is a matter of judgement and the availability of relevant historical documents. It is
likely that future researchers will refine estimates made as part of this study, as well. However,
Table 4.6 shows the most important differences between the values used by DeKay and
McClelland (1993b) and those chosen as part of this study after careful research and full
documentation in Appendix B.

The Logit Procedure Is Biased

1. Due to the nature of the logit transformation and the values in the data set, the
regression algorithm seeks to predict P most accurately when P is smallest and least
accurately when P is largest. Also, P will tend to skew high when it is smallest and skew
low when P is largest.

a. Within the data set, the model tends to predict L with high precision and a slight
bias toward overestimation when L < 10.

b. Within the data set, the model consistently underestimates L by wide margins (an
average of 80 fatalities for the six worst cases) when L > 125.

c. There is no distinct trend in underestimation or overestimation in the mid-ranges
of life loss, but the precision falls in between that for (a) and (b) above.
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Table 4.6. Values used by DeKay and McClelland (1993b) (D-M) and those indicated by
current research (M) in which Wt was quantified only for subPar, but the symbols >
and < indicate if the global value is at least 15 minutes higher or lower than the value
used by DeKay and McClelland. The column for Wt in minutes reflects the subPar
most representative of Par as a whole. The most significant differences are

highlighted in bold
M
sub-
pM/M | DM | M [DM| M| |pMm|Mm
Wt | Wt | Wt

Event L | L Par par | (ho) [ (hr) | (min)| gq |Fq

1 |Allegheny County, PA, 1986 9 9] 2,200 1,700 0 0 0 0|0
2 |Austin, TX, 1981 13( 13| 1,180( 1,196 1 < 30 1 1
3 |Baldwin Hills Dam, CA, 1963 5 5] 16,500 16,500| 1.5 > 105 1 1
4 |Bear Wallow Dam, NC, 1976 4 4 8 4-7 0 0 0 1 1
5 |Big Thompson, CO, 1976 144| 145| 2,500{ 2,500{ 0.5 0 0 1 1
6 |[Black Hills, SD, 1972 (Canyon Lake Dam) 245( 237| 17,000 12,375| 0.5 > 45 1 1
7 |Buffalo Creek Coal Waste Dam, WV, 1972 125( 139 5,000 3,171 0.5 -— - 1 1
8 |Bushy Hill Pond Dam, CT, 1982 0] --- 400 - 25 | - --- 0 |--
9 |[Centralia, WA, 1991 0] --- 150 - 0 --- -—- 0 |--
10* |D.M.A.D. Dam, UT, 1983 1| - 500 - 6.5 | --- -—- 0 |--
11 |Denver, CO, 1965 (South Platte River) 1l ---| 10,000 -~ 3.17 | --- - 0 |-
12 |Kansas City, MO, 1977 201 25| 2,380 3,000| 0.5 < 15 1 1
13* |[Kansas River, KS, 1951 111 ---] 58,000 - 3 - - 1 |-
14 |Kelley Barnes Dam, GA, 1977 391 39 250 140| 0.25 | < | 0.33 1 1
15 |Laurel Run Dam, PA, 1977 40| --- 150 - 0 --- -—- 1 |-
16 |Lawn Lake Dam, CO, 1982 3 ---| 5,000 - 0.75 | --- - 0 |-
17 |Lee Lake Dam, MA, 1968 2 2 80 123] 0 0 0 1 1
18 [Little Deer Creek Dam, UT, 1963 1l --- 50 - 0 - - 0 |--
19 |Malpasset Dam, France, 1959 4211 ---| 6,000 - 0 > - 1 |-
20 |Mohegan Park Dam, CT, 1963 6] ---| 1,000 - 0 > - 0 |--
21 |Northern NJ, 1984 2| ---| 25,000 - 3 - 0 |--
22* [Prospect Dam, CO, 1980 0] - 100 - 7.5 - - 0 |--
23 |Shadyside, OH, 1990 24 24 884 547 0 0 0 1 1
24 |Stava dams, Italy, 1985 270] 270 300 300 O 0 0 1 1
25 [Swift and [Lower] Two Medicine Dams, MT, 28| - 250 - 0.75 | - - I |-
26 |Teton Dam, ID, 1976 (Dam through Wilford) 71 - 2,000 - 0.75 | --- - 1 |--
27 |Teton Dam, ID, 1976 (Rexburg to American 4 ---] 23,000 - 225 | --- - 0 |--
28 |Texas Hill Country, 1978 25 --—-| 2,070 - 0.75 | --- - 1 |-
29 [Vega De Tera Dam, Spain, 1959 150] 153 500 415 0 0 0 1 1

* Not used in equation derivations (omitted as outliers).
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These trends occur because the data set is dominated by cases in which P <0.5. If it
were dominated by cases in which P > 0.5, the direction of bias would reverse.

There is a tendency to predict P most accurately when Par is large because in such
cases P is usually small.

During regression, the regression algorithm thus tends to put greater weight on those
events that are least hazardous (large Par and small expected life loss). As such,
equation DM-2d is least credible when applied to high-hazard events or to small Par,
either of which is likely to produce relatively large values for P.

The Data Set Is Biased

1.

When compared to flash flood deaths during a given year, the USBR found that their

data set was biased toward the most extreme cases, thus tending to overestimate L when
applied to less extreme cases (U.S. Bureau of Reclamation, 1989).

2.

When compared to the most extreme historical events such as the failure at Vaiont,

Italy, the data set is biased to underestimate L by assuming Fd reflects a mix of major
damage, destruction, and up to 80% minor damages.

3.

As long as heterogeneous Par are treated globally and in a manner for which L is

nonlinear with respect to Par, there is little basis for selecting a data set free of bias.
Moreover, the direction of the bias depends on the event to which the equation is applied.

4.

S.

Using the current approach, this can be avoided in only one of two ways:

a. by reducing Par to homogeneous subPar and then developing a unique life-loss
equation for each class of subPar that can be compared across events; or

b. by dividing the existing data set into homogeneous subsets and then developing a
unique life-loss equation for each class of Par that can be applied only to Par with the
same traits.

In both cases (4a and b, above), more variables than Wt, Fd, and Par would need to be

considered. That is the burden of Chapters V — VII and the Appendices.
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CHAPTER V

CHARACTERIZATION OF CASE HISTORIES

Introduction

Purpose for characterizing events

A great many variables theoretically influence life loss from a dam failure. Undoubtedly,
any model which included as many of these as could be conceived (and their thousands of
corresponding interaction terms) would be unwieldy in the extreme. Moreover, the number of
data points necessary to calibrate such a model or for a complex statistical regression to be
meaningful grows exponentially with each new variable that is considered. Due to the limited
number of catastrophic floods that have occurred and the still more limited information that is
available on these floods, any regression involving more than a handful of variables appears
doomed from the outset.

Nevertheless, there is great value in seeking to identify as many variables as possible and
to quantify them for as many historic flood events as possible when sufficient information is
available. Not only does this help a researcher to identify the handful of variables that are most
useful for prediction, but the process itself forces the researcher to think in new ways and to
explore new kinds of information that can potentially shed light on the dynamics that affect life
loss in catastrophic floods.

Several potential benefits follow:

1. As was indicated in Chapters III and IV, those variables that have been most popular
in the dominant life-loss models—in particular the DeKay-McClelland (1993b) variables
warning time (Wt), dichotomous forcefulness (Fd), and population at risk (Par)—have serious
shortcomings when comparing dissimilar flood events. It might be possible to define new
temporal relationships, exposure terms, subPar, or other variables that could prove more useful
as comparative and predictive tools.

2. The use of new variables may provide insight into traditional variables. For example,
Brown and Graham (U.S. Bureau of Reclamation, 1989), Lee et al. (1986), and DeKay and
McClelland (1991, 1993b) all developed life-loss relationships that are nonlinear with respect to
the size of the population at risk. Yet, intuitively, if every individual in a population faced threats
that were identical in every way (same depth and velocity of water, identical locations, same
warning time, same time needed to evacuate, identical rescue assistance, etc.) one would expect a
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consistent percentage of individuals to perish, regardless of whether 10, 100, or 1,000 individuals
were in that population. Granted, the threat to individuals is likely to vary with population size,
both favorably (rescue resources may be more readily available) and adversely (evacuations may
take longer), but it may be possible to define new variables that minimize these differences based
on the size of the population alone. Likely reasons for the nonlinear trends that are nearly
eliminated by focusing on homogeneous subPar are presented in Chapter V.

3. Even if variables cannot be used directly in a regression equation, perhaps because
of a paucity of diverse data points, key variables or combinations of variables may help an
analyst to adjust an estimate upward or downward based on reasoning and historic precedence.

4. Uncommon variables may prove useful in distinguishing among failure categories;
in suggesting more than one regression equation based on these failure categories; in suggesting
order-of-magnitude probabilities to use as a check against the results of a regression equation;
and in suggesting a reasonable range for confidence limits.

5. By fully characterizing each event, it is possible to gain an intuitive feel for each
event. This helps an analyst determine when a new event falls outside of the experience of the
data set, which events a new event is most likely to resemble, and where the range of life loss is
most likely to fall. This provides a reality check for an estimate produced by a regression
equation. As an alternative approach, it also allows an analyst to select a handful of events that
are most similar to the one in question and to customize a new regression equation based on this
select group or to use the select group to craft a representative probability distribution.

6. Modern GIS, census data, and flood inundation modeling allow for increasingly
refined estimates of Par and subdivision of Par by community, location, distance, depths,
velocities, housing damages, and other distinctions, making many variables potentially useful.
This contrasts with the problems associated with the use of global Par by Brown and Graham
(1988) (U.S. Bureau of Reclamation, 1989), Lee et al. (1986), and DeKay and McClelland
(1993b) (see Chapter 1V).

7. Some risk analysts are more familiar with the application of an equation to
hypothetical events than they are with the historical events from which the equation was derived.
By presenting event characterizations with full written support, it presents an immense quantity
of source material in a more readily digested package.

8. Past characterizations have not been readily accessible to future researchers, making
it difficult for others to evaluate or build on their work. By fully documenting each
characterization, it allows other researchers to dispute the characterizations or to refine them as
they see fit.

9. Detailed characterizations may prove useful for research into aspects of catastrophic
floods other than life loss and for improving the effectiveness of emergency warning and
evacuation procedures.

10. Empirical approaches based on regression or calibrated parametric models are
preferable to purely analytical equations because their validity is founded on historic reality and
patterns of life loss are sufficiently complex that they defy uninformed intuition.
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Method Of Collecting Event Histories

As indicated in the introduction to Chapter VI, source material for dam failures and flash
floods is not always easy to obtain. As such, the best source of information is those who have
dedicated many years to building files on such events. The majority of the documents examined
in this study were copied from the personal files of Wayne Graham in the Denver office of the
United States Bureau of Reclamation. Additional source material was obtained from a branch of
the National Performance of Dams Program called the Center on the Performance of Dams at
Stanford University. These files covered more events, but contained less material than Graham’s.
In some cases, information was obtained from other sources.

Every event for which at least a passing reference was obtained is listed alphabetically in
Table A.1 of Appendix A. This table includes the name and location of every event, its date, an
approximate magnitude of life loss, and the nature of the flood (i.e., dam failure, dyke failure,
flash flood, broad flooding, sea surge, etc.).

There was not time to characterize every event for which files were gathered, so Table
A.1 also indicates which events have been characterized in Appendix B, which files are lacking
enough information to be useful, which files are likely to be useful for characterization in their
current form, which events are likely to prove useful following additional research, and the
manner in which certain events were used by DeKay and McClelland (1993a).

Since the files gathered were dominated by dam failures, and since flash floods are much
more common than dam failures, flash floods remain a largely untapped direction for future
research. Indeed, within a one-week period of the current composition (August 1999) news has
been obtained of two flash floods. One was in Utah and one was in Switzerland that killed at
least 18 people.

Characterization of events

Characterizing Variables

The first step was to define as many characterizing variables as was practical that
describe a flood event or that might have a direct bearing on life loss. Initially, there were about
55. It should be emphasized that it was never intended that all of these variables would be used
for prediction. Rather, it was hoped that they might provide a fuller understanding of the
dynamics of life-threatening floods—especially the life-loss dynamics—and that by exploring
new avenues, a narrower set of characteristics might prove useful as predictive aids.

As events were analyzed, it became apparent that those characterizing variables that
might prove most useful for prediction had yet to be defined. Through an iterative process, the
number of characterizing variables under consideration grew to nearly 100. The characterizing
variables most relevant to loss of life were originally broken down into five broad categories:
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populations at risk, flood characteristics, spatial and temporal relationships between Par and the
flood, and circumstances that attend the flood. For clarity, there was value in dividing the fourth
category into circumstances that are temporary, delivered by nature, and those that are human in
origin and thus typically more permanent. Those variables that were late additions have been
included as a sixth category since they were not fully characterized for every event. This also
flags them for special consideration.

Some of the variables, like those that describe the type and dimensions of a dam, were
included primarily to paint a picture of the event and to provide information on the failure itself,
with their predictive potential being secondary. Such information might facilitate research into
the probabilities of failure and the likelihood that such failures will be detected in a timely
manner as the data set is examined and expanded over time.

The 55 variables that fill the five categories must be characterized in one of four ways: by
assigning a quantitative value (such as velocity), by designating a relative rank (such as degree of
urbanization), by selecting a category (such as dam type), or by recording a description (such as
the location of fatalities or a description of the housing damages). The last type of variable is a
means of record keeping to assist in characterizing one or more variables in the other categories.

In the language of statistics, the second and third type of variables are called categorical
variables, with the second being known as ordinal variables and the third being known as
nominal variables. Once placed in a regression equation, statisticians sometimes call the
dependent or Y variable the response variable and the independent or X variable an explanatory
variable (Agresti, 1996). In this text, all variables will be called characterizing variables or
simply variables, to indicate that they characterize an event. As subsets, a variable becomes a
predictive variable if it is later found useful for that purpose, or a dependent variable if it is the
basis for regression. L(P) is an example of a dependent variable described in Chapter I'V.

Nomenclature

To facilitate the unambiguous use of symbols in equations and in the text, each variable is
signified using a single capital letter or a capital letter followed by one or more lower case
letters. In some cases, letters or numbers can be written as subscripts if it makes a symbol easier
to read. For example, Par; refers to one or more specific subPar (Par can be singular or plural,
based on context). Par; is the third subPar defined for a specific event.

Generally, an ordinal variable is assigned one of the following levels: N = None,
L =Low, M = Medium or Moderate, H = High, V = Very High, or E = Exceptionally High. The
precise nuance or meaning of each of these gradations is specific to each variable. Indeed, “low,”
“medium,” or the other words associated with the symbols listed above are often poor
grammatical companions to the variables that follow, so they are defined more thoroughly in
each case. Nevertheless, to avoid the need to memorize or reference a separate set of symbols for
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every variable, gradations are limited to these six symbols. Most ordinal variables use only part
of this range, but the sequential hierarchy of the symbols is maintained to minimize confusion.

Every nominal variable has a unique set of symbols. The reader should consult the
sections that follow whenever the precise nuance, criteria, or definition of the coding of a
variable is in doubt.

Comprehensive List of Characterizing Variables,
Their Coding, and Their Definitions

Populations At Risk

Population at Risk (Par)

Technically, Par should identify the number of people for whom a dam failure is
hazardous in the sense that their lives are truly in jeopardy. Recognizing this, the Australian
National Committee on Large Dams (1994, p. 114) defined Par as “all those persons who would
be directly exposed to floodwaters within the dambreak sic affected zone if they took no action to
evacuate.” The italicized phrases were the key modifications to previous definitions. By using
“directly,” they excluded those who might be safe from calm waters due to the elevation of their
property or perhaps a second story. They also excluded those who might be injured by
evacuating motorists after they cleared the flood zone. By including “within the dam-break
affected zone” they were referring to another technical definition:

Dambreak Affected Zone: That zone of flooding where the changes in depth and velocity
of flooding due to dambreak sic are such that there is potential for incremental loss of
life. [They then refer to depth-velocity charts such as might be developed using study
results from Abt et al. (1989) discussed in Chapter 111 of this thesis.] The Dambreak
Affected Zone is in any case limited to those areas where dambreak causes a rise in level
of floodwaters greater than 300 mm [about 1 ft]. (Australian National Committee on
Large Dams, 1994, p. 110)

As reasonable as such a definition might appear, it is impractical for several reasons.
First, as any fisherman who has waded a stream soon discovers, the momentum of floodwaters
has a direct bearing on his threat to life. Most healthy adults could safely wade through stagnant
water several feet deep, while less than a foot of rapidly moving water can sweep a car from a
road and plunge it into fatal waters downstream. Since the depth and momentum of water
changes rapidly based on local variations in slope, contour maps are inadequate tools to define
hazardous regions on this scale. Second, the hazard posed by water varies among individuals.
Small children or infants, the elderly, those who are disabled or physically disadvantaged, those
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who cannot swim, or those with fear of water might perish in situations posing little threat to
others.

In light of these uncertain factors, the term Population at Risk becomes somewhat
misleading and challenging to define. In order to include all hazardous regions, the population
must be defined so expansively that only a portion of the Par would truly be at risk of death in
most cases; given sufficient warning and evacuation, none of the Par would risk death apart from
the dangers inherent in emotionally charged situations and the evacuation itself. Traditionally,
Par has been defined as broadly as possible to include all those who, given no warning and
without moving, would get their feet wet from the flood (i.e., Dekay and McClelland, 1993b;
U.S. Bureau of Reclamation, 1989'; Lee et al., 19862).

“Get their feet wet” has usually neglected any increase in elevation provided by buildings
(Lee et al., 1986, made this explicit; see footnote). If such elevations are included, one can face
dilemmas: A woman who is gardening is swept away by 2 or 3 ft of water while her husband
remains dry cooking dinner in the elevated kitchen and her 5-year-old daughter scrambles to
escape the torrent of water pouring through the open basement window. If such elevations are
neglected, there is still the risk that people will enter the flood zone from outside or while
crossing it from an island inside. Moreover, dam break studies cannot fully account for the
effects of channel scour, debris dams, variations in channel geometry, bridge failures, road and
berm washouts, dispersion, or other vagaries on the direction and pattern of a dynamic flood
wave, making even the most refined analysis lacking.

Identifying historic Par is no easier. Without the aid of GIS or detailed census data, Par
must often be estimated using evacuation figures, statistics on housing damages, by viewing
aerial photographs, by counting dots that represent structures on maps, or by other forms of
approximation. However, for historical floods these methods generally rely on the actual
dimensions or affects of the flood and so they may provide better estimates than a computer
simulation of inundation.

What we want is a definition of Par that when used predictively is most likely to match
the definitions implicitly used for historic events. DeKay and McClelland (1993b, p. 196)
defined this as “the number of people that were evacuated or the number of people that would
have been evacuated had there been any warning.” However, this is highly subjective and may
include areas much larger or much smaller than the flood itself. Also, Par has seldom been
quantified in this manner; most of the Par in Appendix B are quantified based on the number of
buildings with at least minor damage. Such damage is a function of the depth and velocity of a
flood near its peripheries.

! “All individuals who, if they took no action to evacuate, would be exposed to flooding of any depth”
(U.S. Bureau of Reclamation, 1989, p. I11-25).

2 “A person is at risk if he or she would be touched by the flood water at peak stage if he or she were to
stand outside” (Lee et al., 1986, p. 6).
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By way of a solution, Par can be defined using a trichotomous approach to flooding and a
modification to the ANCOLD definition. The three categories recognize the diverse nature of
flooding, defining it in a manner that reflects the likely patterns underlying the calculations of
Par in the case studies. In general terms, the definition by Lee et al. (1986) should be adopted for
Par inhabiting terrain that is steep or close to the dam: “A person is at risk if he or she would be
touched by the flood water at peak stage if he or she were to stand outside” (Lee et al., 1986, p.
6). At the other extreme, in areas where a flood consists of a nearly stagnant backwater, Par
should include only those who would be exposed to flooding greater than or equal to 1.5 ft in
depth. When flood characteristics fall between these extremes, Par should include only those
exposed to flooding greater than 6 — 12 inches deep, based on a convenient contour. The depths
surrounding a single Par should vary according to all three of these criteria as the area’s
topography and relationship to the river change.

To standardize these criteria and give them justification, the divisions can be refined with
the help of depth-velocity curves that indicate the conditions needed to sweep away humans and
automobiles; and with assumptions regarding the depths likely to mobilize a voluntary
evacuation. The sections that follow convert the three general guidelines in the preceding
paragraph to three standardized rules, each followed by supportive reasoning.

In flooded areas where the lateral slope exceeds 0.01 and the velocity at depths of 1 ft
exceeds 3 fps, a person is a member of the Par if they would be touched by the flood while
standing outdoors on the ground prior to evacuation. If the lateral slope is greater than 0.01, a
one foot rise in flood depths will not encompass a new row of houses, but those houses within
the flood will extend to depths of 1 ft. At velocities of 3 fps, these depths would likely inspire
evacuations and cause minor housing damage.

For perspective on these relationships, as water nears 2 ft deep, a monolith simulating a
feeble adult can be consistently toppled in flow velocities ranging from 1.18 to 2.16 fps (less
than half of walking speeds). At the other extreme, wearing safety harnesses in a laboratory
flume, very healthy adults can be toppled in water between 1.6 and 2.0 ft deep with velocities
ranging throughout the 4.5 to 8.5 fps range (see Abt et al., 1989, or Chapter III). Including all
ages and all levels of health, it is likely that many people—especially children—could be toppled
between these extremes in the far less ideal conditions of a sudden flood surge. Once toppled,
people can be swept toward the center of the channel. Thus, flows as shallow as 1 ft deep can be
dangerous if they approach 10 fps and flows that are 2 ft deep are potentially lethal to an
important fraction of the population even when velocities are moderate.

Safety officials who do not know how high a flood will rise would probably include all
such areas in an evacuation plan.” Moreover, depths in this range will pile mud and debris in

3 Remember that Par includes far more people than are likely to die, except in the most extreme events. In
order for a regression equation to apply to future estimates of life loss, current definitions of Par must be as
expansive as historic definitions. Evacuation plans would be particularly expansive for fast, violent floods, probably
extending to the limits of flooding or beyond.
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yards and possibly flood ground floors, causing minor housing damages. In both cases, such
areas would likely be included in historic Par.

In flooded areas where velocities are less than 1 fps at depths of 2 ft, a person is a
member of the Par if they would stand in water greater than 1.5 feet deep while standing
outdoors on the ground prior to evacuation. In contrast to the high velocity, narrow flood
anticipated above, a leisurely flood crossing a wide floodplain will form backwaters that
pose little hazard to life. Two questions arise: At what depth are lives endangered and at
what depth are houses damaged?

The answer to the second question might be the point when an automobile can be carried
toward treacherous water. The U.S. Bureau Reclamation (1989) presents a graph derived from a
study conducted by Simons, Li, and Associates, Inc. (1984) for the City of Boulder Colorado.
The study attempted to determine the depth-velocity combinations necessary to move an
automobile downstream. Interestingly, the graph of such a relationship is almost vertical: at a
depth of 1.25 ft, a flood must travel at 10 fps to move a car, while at a depth of 1.9 ft, a car can
be moved by the slightest current. At walking speeds (4 — 5 fps), the depth is close to 1.5 ft.

Even where average depths and velocities are low, a flood can generate an unexpected
current across low spots that funnel the water. Motorists who are swept away while attempting to
cross a road with seemingly minor flooding is a leading cause of death in flash floods. Thus,
quiescent floods with depths of about 1.5 ft have the potential to endanger lives in select
locations. At these same depths, houses would be damaged even in stagnant water. Hence, Par
should always extend to depths of 1.5 ft, no matter how calm the flood.

In flooded areas where velocities fall between the extremes of the two previous rules, a
person is a member of the Par if they would stand in water greater than 1 foot deep while
standing outdoors on the ground prior to evacuation. These floods fall between the extremes of a
quiescent backwater and a raging torrent. Many people would not evacuate if water did not enter
their homes or rage swiftly across their yard. Nor would they be at measurable risk. As such,
only those who have water lapping at their door should be considered—somewhere between
about 12 — 18 inches. Based on the scale of most flood maps, any contour that sets flooding close
to 1 ft would be satisfactory.

Summary. When the lateral slope exceeds 0.01 and the velocity at depths of 1 ft exceeds
3 fps, the geographic boundaries of the Par extend to the edge of the flood. When velocities are
less than 1 fps at depths of 2 ft, the geographic boundaries of the Par extend inland to points
where the flood drops below 1.5 ft. In all other flood conditions, the geographic boundaries of
the Par extend inland to points where the flood drops below 6 to 18 inches, or 1 ft for
convenience. Par includes all those present in the geographic boundary after the dam fails and
prior to the arrival of a warning.

Although these rules are intended to standardize analysts’ approaches and conform them
to the definitions most likely to underlie the quantification of Par in the present study, they can
be violated if such violation will more closely conform to the patterns in this present study. For
example, if a long, public building had a second or third story entrance high above a flood, but
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the first floor was far down slope where it faced high-velocity flooding, the analyst might want
to exclude those on the second or third floors from the Par if the structural integrity of the
building was not expected to be threatened.

Threatened Population (Tpar)

Recognizing that population at risk (Par) includes many individuals who will never be
threatened by flood waters due to evacuation—and conversely that convergence of curiosity
seekers and safety workers on a floodplain can increase counts beyond the members of Par—the
threatened population is defined as all those present in the flood inundation area when the flood
wave arrives.

The same depth and velocity relationships apply for Tpar as for Par. That is, in general,
once flooding exceeds about a foot, anyone trapped in a building or wading across the floodplain
becomes part of Tpar, but the first 6 — 12 inches of flooding can be ignored.

SubPar (Par;)

Population at risk (Par) should be subdivided whenever there is a clear change in a major
characterizing variable and there exists sufficient historical evidence to characterize Par;
individually. The exact information required will depend on the components of any proposed
model, but information regarding the size of the subPar, the life loss within that subPar, some
measure of the warning time applicable to that subPar, and a description of the flooding
characteristics or damage characteristics within that subPar are essential. It is also highly
desirable to know how many people successfully evacuated prior to the flood’s arrival, the
average time required for evacuation, and the circumstances or locations where individuals either
perished or survived the flood. Most variables must be characterized anew for every subPar and
may be subscripted for ease of reference. The goal is to produce subPar that are as homogenous
as possible and that can then be grouped with like populations from diverse events to obtain a
historic frequency distributions for key variables like life loss (L).

Threatened SubPar (Tpar;)

Tpar; is the same as Tpar, but it is specific to a subPar (Par;).

Life Loss (L)
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Life loss (also commonly called loss of life) refers to the number of deaths of any kind
and at any location that can be attributed directly or indirectly to flooding, without regard to
whether or not the deaths would have occurred had the dam not failed under the same loading.

In some cases, flood victims are never recovered and are listed as missing rather than
dead. When victims remain on the list of missing in the most recent reports, they are included in
L under the assumption that they most likely perished; if not confirmed fatalities, they perished
in the minds of all who knew them, with comparable local effect.

Expected Life Loss (Le) and
Historic Life Loss (Lh)

In predictive applications, L refers to the expected life loss (mean life loss) as generated
by a predictive model, without adjustment. When predictive models are applied to historic case
studies, the historic L can be distinguished from the expected L by using Lh and Le, respectively.
In such cases, Lh or Le should be substituted for L in the definitions below (Lha, Len, etc.).
When the context is clear, L alone should be used, as it is throughout the rest of this report.

Adjusted Life Loss (La)

When making an estimate, if the investigator finds reason to adjust the expected value of
L, this adjusted value can be distinguished from L by using the symbol La. The symbol La is
unnecessary if the context makes the meaning of L clear.

Natural Channel (never a
dam) Life Loss (Ln)

This is the expected life loss (L) given that the dam had never been built and the same
loading (earthquake, storm) occurs. Unless the dam that fails is relatively new, Ln generally
assumes less flood plain development and different recreational patterns than after a dam has
been in place for many years. Ln is a construct that is counter-historical, except in the case of
flash floods on dam-free rivers.

Life Loss given Dam Removal (Ldr)

Dam removal is often considered as a risk mitigation option. This variable assumes the
dam is removed, sediment issues are resolved, and the channel through the reservoir is restored
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shortly before the failure loading occurs, using the then-current level of flood plain development
and channel geomorphology.

No Failure Life Loss (Lnf)

The number of deaths that would have occurred had the dam not failed given the same
initiating conditions. In the event of internal failures with no unusual loading conditions, Lnf is
always zero. In other types of failures, it may be difficult to quantify Lnf from the case
descriptions themselves, so it must be estimated in some other manner. In some instances, case
studies or established methods involving flash floods or earthquakes may prove useful.

Incremental Life Loss (Li = Li, or Lig. or Liyy)

Various symbols for life loss (L, Ln, Ldr, Lnf) and the subtleties of each are defined
above.

Despite our best flood mitigation efforts, floods claim many lives every year. In some
cases, such as where a downstream channel constriction creates an elevated tailwater, a dam
failure may add little height to the ensuing flood wave, thus contributing little to the ensuing life
loss.* The incremental loss of life (Li) is limited to those deaths that would not have occurred
without the failure.

Even after a failure determining the incremental life loss is often challenging and
sometimes impossible, since it is difficult to know how many lives would have been lost without
a failure. There are, however, several possible baseline cases against which to compare.

If Li, = L - Ln, Li, discounts the fact that the existence of a dam, historically, probably
led to increased recreational activity and its flood control benefits likely promoted flood plain
development. Indeed, it may be the irrigation benefits that allowed a community to develop in
the region at all. Such a comparison contrasts quite dissimilar scenarios, making the dam owner
responsible for the growth in downstream population, but ignoring both the many benefits the
dam provides and the lives the dam potentially saved during previous flooding events. When
comparing developed nations with dams to less developed nations without dams, one could even
argue that the relative prosperity that dams have helped bring about has saved lives by reducing
poverty and disease.

* For example, when Rapid City in the Black Hills of South Dakota flooded in 1972, flooding was so severe
that when Canyon Lake Dam failed, the reservoir pool was only about a foot higher than the tailwater. It has been
suggested that of the 245 fatalities, perhaps only 33 can be directly attributed to the extra flooding caused by failure
of the dam (Graham, 1998).
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On the other hand, if a dam has not yet been built, comparing L to Ln seems to be the
most natural approach to a dam’s hazard potential.

For existing dams, if Lig: = L - Ldr (U.S. Bureau of Reclamation, 1989), comparisons are
more direct, since standards of living, past benefits, and levels of development are the same in
each case. One has a useful measure to help determine whether the dam should be kept or
removed. It should be noted that the number of fatalities might actually be lower given a dam
failure over against the same event rushing through the valley without a dam in place. While a
dam failure will unleash a wave of larger volume, if the failure does not progress rapidly, the
peak may be dampened compared to a natural flash flood. Also, if monitoring of the dam may
allow adequate warning time and the dam delays the onslaught of flooding, lives can potentially
be saved through evacuation.

One drawback to this definition of Li is that it ignores the future affects on recreation and
flood plain development caused by removing the dam. Even if Ldr were redefined to be a current
removal with a future population at risk, there is no way of knowing how far into the future a
failure might occur, making it difficult to adequately define any growing disparities between L
and Ldr in terms of Par. Also, like Li,, comparing L and Ldr for a future event ignores the lives
potentially saved through flood abatement and economic development due to keeping the dam
prior to failure.

The third possible definition is Liys = L - Lnf. This definition is useful in comparing the
status quo against various versions of the dam following proposed improvements; or in
comparing various designs of a dam yet to be built. This comparison may be used to guide future
decisions or to evaluate past decisions. Like Lig., Liys cancels the shared historical benefits or
harms of the two scenarios, focusing attention on the isolated event of interest. It has the
advantage that any differences in flood protection or floodplain development are likely to be
minor. A tremendous practical benefit is that the two scenarios depend on similar hydrologic
data.

None of these definitions prove adequate for every purpose. Clearly, if rehabilitation
alternatives are being considered, the Li,r has many advantages for existing dams, but in any risk
assessment or liability investigation, removal of the dam must be included as one of the policy
alternatives. In that case, the Lig, seems imperative. If a dam has yet to be constructed, Li, is the
only increment that gives due consideration to not constructing the dam at all. For some dam
owners, the choice of analysis may hinge on legal liability considerations, in which case any or
all three may prove important.

Proportion of Lives Lost (P)

The proportion of lives lost (P) refers to lives lost among a population at risk (Par) as
opposed to lives lost among a threatened population (Tpar) or other subdivision of Par. Like the
other variables, it can be specific to a global population at risk (Par) or to a subPar, with the latter
relationship designated by a subscript: P = L/Par and P; = L;/Par;,
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Fatality Type (Ft)

Fatality type helps define the manner in which a flood proves lethal. It categorizes the
dominant types of death according to their nature or locality. Ideally, the associated number of
deaths should accompany each symbol.

N

MW O

U

none.
campers, including recreationists hiking/walking/standing near the river
those in the river when the flood wave appears: waders and swimmers.
those on the river when the flood wave appears: rafters and boaters.

those in or on a lake when the flood wave appears: boaters and swimmers.

employees of the dam owner who are at the dam for construction, repairs,
monitoring, failure prevention, etc. Note that this category will overlap with some
of the others.

automobile occupants killed by flood waters.
those killed in an automobile accident during evacuation.

general drowning deaths in areas with buildings. Note that it may be impossible to
distinguish deaths in buildings, automobiles, and on the floodplain here.

slope failure at or very near the dam itself.

other = non-drowning deaths other than auto-related or slope failure near the dam:
mudslide associated with the flooding and not the dam failure itself, suicide, heart
attack, exposure, disease, etc.

Unknown mix.

Locations of Deaths

The location of a death is generally considered the place where an individual was
overcome by flood waters, in contrast to the location where the body was recovered. In general,
it associates the death with a particular Par;. When more detail is available, it locates the victims
in buildings, in automobiles, in the open, etc.

Flood characteristics

Flood Type (Flt)
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This is the source of the flood. In some cases, more than one source is involved.

D = dam failure.

Dy = failure of a dyke—whether it be a sea dyke or a levee—thus being similar in some
respects to a long dam.

Ff = a flash flood, meaning the flood wave is sudden and fast rising or a wall of water.

F = flood, meaning a widespread event that cannot be described according to the other
categories in this list.

Ts = atsunami or tidal wave.

n
Il

a S€a surge.

H = flooding caused by a hurricane and distinguished from F or Ff in that the deaths are
not necessarily a result of the flooding.

Gb = a glacier burst.

O = other types of flooding difficult to categorize, such as when a storage tank or water
tower bursts.

Peak Velocity (V)

V is the peak velocity for a given Par;. It may require an approximation based on
eyewitness accounts of the approaching flood wave or an average value based on post-failure
flood routing or known travel times.

Maximum Depth (D)

Since rivers vary greatly in depth, the maximum depth in the center of the channel has
little comparative value from one case to another. D is thus the maximum depth on land for a
given Par;. D should be the greatest flooding depth that could have been witnessed by any
member of Par;, whether or not they were present or survived. This would generally be estimated
using high water marks on buildings or trees, or the height of a wall of water (Ww). The datum
will be somewhat subjective, but should be the lowest point at which a member of Par; might
have originally occupied.

Peak Volumetric Flow Rate (Op)

Qp is the maximum volumetric flow rate experienced at the location of a specified Par or
subPar during the duration of the flood.
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Bankfull Volumetric Flow Rate (Qb)

It is desirable to quantify the magnitude of a flood in a way that discounts the flow in the
main channel to quantify the rate at which water actually flows across the floodplain. A flow of
30,000 cfs in a very large river might never top the banks, while such a flow in a tiny mountain
creek would likely cause considerable damage to bordering communities. This normalized
measurement is found by subtracting the bankfull flow rate from the peak discharge (Qp — Qb).

While a simple concept, Qb is not so easily defined. Floodplains are rarely flat with a
clear channel rim. Superelevation can cause the outer bank to flood before the inner bank. Quite
often, communities are constructed on surrounding hills, terraces, or a higher floodplain created
during an earlier flow regime, which can make the narrow floodplain directly next to the river
difficult to discern. In mountainous areas, V-shaped valleys can obscure the floodplain
altogether. Compounding this, there can be natural levees or low spots produced by previous
channels that crisscross a river valley (Leopold, 1997).

Physically, the geomorphology of streams are governed by their flow regimes. Hence,
“nearly all stream channels, whether large or small, will contain without overflow approximately
that discharge that occurs about once a year. Higher flows” occurring once every 2 to 5 years,
will overflow onto the floodplain (Leopold, 1997, p. 64). Generally speaking, Qb is equaled or
exceeded 2 to 4 days per year, with a return period of about 1.5 years. This holds true whether
the high flows are from rainstorms or spring snowmelt (Leopold, 1997).

This suggests several methods for estimating Qb. The ideal method is to use a known
stage-discharge relationship at a low point within the subPar. Short of this, a reasonable estimate
for Qb can be made by interpolating the 1.5-year return flow off a flood-frequency diagram for
the area in question. Since the mean annual flood has an average recurrence interval of 2.3 years
(Leopold, 1997), the mean annual flood would provide a reasonable approximation. If flows for
only a few specific return periods are already known—say the 5 and 10 year floods—these place
a boundary on Qb from which reasonable estimates may be possible. Similarly, a few stage-
discharge values may suggest a reasonable range for Qb. Even typical or average flows for a
river suggests something about its size, pointing toward an order of magnitude for Qb.

The preceding discussion highlights that it is generally not critical to calculate Qb with
high precision. This holds true because there is already great uncertainty as to what multiple of
Qb is needed to reach the first person, there is great variation between subPar as to the general
steepness of slopes beyond the riverbank, and, most importantly, since Qb is often one or two
orders of magnitude smaller than Qp, a rough estimate is all that is needed to refine Qp — Qb. In
light of this, Qb can usually be estimated without extensive hydrologic calculations.
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Maximum Width (W or W) and
Derivatives (W pin, Wavg)

The peak flow rate (Qp), the bankfull flow rate (Qb), and the maximum width of a flood
at a given subPar (W), are necessary to compute the magnitude of the destructive velocity (Dv)
for a given Par;. An alternative to W, also designated Wpay, is to use the minimum width (Wpin)
or some representative average width (W,y,). When W alone is used, it is assumed that it is Wax.

Destructive Velocity (Dv)

The variable Dv was first proposed by Graham (1998).” Graham did not provide a name
for the variable, but the symbol was derived from the relationship depth*velocity. By definition,
Dv = (Discharge above bankfull)/(width of flooded region) = (Qpeak — Qvankfuir)/width. This has
units of (distance)*/time or depth*velocity.

Since velocity alone tells little about the potential of a flood wave to cause destruction,
the flow’s depth is a critical component. By using the entire volumetric flow rate and dividing it
by the flood width, the resulting variable automatically averages across variations in depth and
velocity, providing a description not only of the entire flood wave, but also of its interaction with
Par;. In general, since populations tend to spread further from the river as a valley widens, the
more dispersed Par;, the wider the flood and the smaller Dv becomes compared to the same flow
rate in a narrow canyon. If one were to use (maximum depth)*(velocity) instead, it would
provide only a point estimate at the center of the channel, describing little about the flood’s total
magnitude and how it interacts with Par;.

Since no temporal variation is included in this variable, it should be quantified using
maximum values, whether or not the maximum width corresponds with maximum flow. Since
depth and velocity are indirectly included in this variable, they need not be treated separately,
except as they vary with time. This is the purpose of rise rate (R) and wall of water (Ww) below.
Nevertheless, the maximum depth within reach of Par; (D) and the peak velocity within reach of
Par; (V) are included in case Dv cannot be adequately quantified.

Since one could use Wmax, Wiin, or Waye (defined above) to quantify Dv, Dvpis
corresponds to Wy« (because maximum W minimizes Dv), Dvp,, corresponds to Wi, and
Dv,y, corresponds to Wayg.

Maximum Rise Rate (R)

> Graham’s symbol was DV, meaning depth*velocity, as explained in the text. The name “destructive
velocity” was chosen here because the variable combines an average depth with an average velocity to describe the
destructive potential of the flood wave and this preserves Grahams general symbol.
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Flood waves that cause common sorts of fatalities must generally rise fast enough to trap
people unawares or overtake them as they seek to flee.® The maximum rise rate refers to the
steepest portion of the rising edge of the outflow hydrograph.

Quite often, floods resulting from dam failures or severe flash floods rise instantaneously
as a wall of water. Since this peak rise rate is infinitely fast and thus not quantifiable in the same
way, “Ww” should be entered to indicate that the next variable applies instead.

R should also be treated as an ordinal variable as follows:

M = moderate (can walk away from the flood waters if not lingering).
H = high = rapid (requires immediate, rapid action to avoid being trapped).
V = very rapid (difficult or impossible to outpace waters, even with immediate
evacuation on foot or by automobile).
Ww = wall of water (indicates the rise rate is instantaneous and can only be quantified by

measuring the height of the wall of water).

Wall of Water (height of) (Ww)

The height of a wall of water is usually based on eyewitness accounts and/or flood
routing. When more than one value is suggested, those figures which are deemed most credible
should be averaged. In cases where the flood wave does not pile up in a wall, one should enter a
“0,” indicating that it must be described using the rise rate (R) above.

Often, eyewitness accounts of Ww are based on the in-channel depth of Ww, which may
exceed the peak depth on the bank (D). Hence, Ww < D.

Damage and Destruction (Dd)

The number of structures destroyed, seriously damaged and damaged to any extent
should be recorded by category of structure and degree of damage, when available. Note that this
variable is essentially a detailed record for quantifying forcefulness (F) and loss of shelter (Ls).

Forcefulness (F = Fp, Fd, Fs, or Fpar)

® An exception to this might be when water crossing a road appears safe, but subsequently sweeps an
unsuspecting motorist downstream. Even in this case, however, fatalities are more likely when the water rises
unexpectedly during the crossing.
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Dekay and McClelland (1991, 1993b) developed this variable. Originally, it was intended
to represent the proportion of Par actually subjected to potentially lethal flooding’ by dividing
the number of residences destroyed or seriously damaged by the sum total of all residences
experiencing any damage at all. This is defined here as Fp for proportional forcefulness.

As reasonable as Fp may at first appear, it is not easy to define in a consistently
meaningful way. The force required to damage or destroy shacks, mobile homes, frame
dwellings, brick houses, and large commercial buildings is quite different. Even within a given
category, it will vary across centuries and countries depending on the building codes.

In contrast to the forcefulness of a flood, its potential lethality may be better captured by
including all occupied structures,” since a structure that experiences little harm generally
provides a safer haven than one that is damaged.

The importance of each structural category varies with occupational cycles and with the
relative proportion of each type of structure in the flood zone. This point becomes critical when
considering Par; located at a campground or along a stretch of river frequented by rafters or
fishermen; in such cases, there may be virtually no significant structures at all!

For consistency, this study will follow Dekay and McClelland (1991, 1993b), focusing
exclusively on residences. Not surprisingly, Dekay and McClelland found Fp difficult to quantify
using historic data, so they turned to Fd.

Fd is dichotomous forcefulness wherein forcefulness is high (1) or low (0). To fill in
historical gaps, Dekay and McClelland (1991, 1993b) relied heavily on the expert judgment of
Wayne Graham. Fd is conceptually identical to Fp, with the dichotomous dividing line between
about 0.15 — 0.2. To update the Dekay and McClelland definition, Fd = 1 is definitively set at Fp
> (.2 based on all available evidence and, in the case of Par; without buildings, the destruction
that would have been likely if frame residences were physically present.

Fs goes a step further, subjectively dividing Fp into five even ranges:

L = low(0-0.2).

= medium (0.2 - 0.4).

high (0.4 — 0.6).

= very high (0.6 — 0.8).

= exceptionally high (0.8 — 1.0).

m <z =
Il

7 Forcefulness was originally called Flooding Lethality or lethality for short (DeKay and McClelland,
1991). Presumably, since the variable measures the force of the flood on buildings and does not take account of the
temporal considerations that influence lethality, the more accurate term was adopted in 1993 (DeKay and
McClelland, 1993b).

e, excluding barns, outhouses, chicken-coops and the like, but including RVs in campgrounds, mills,
businesses, power plants, and other structures occupied for many hours each day.
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Fpar is the number of habitable structures of any type that are damaged severely or
destroyed, divided by Par;.

Height of the Dam (H)

Ideally, the height of the dam is measured from the streambed and not the bottom of the
foundation.

Height of the Reservoir Pool
at Failure (Hp)

Ideally, the height of the reservoir pool at failure would be measured from the tail water
of the dam, but this is unlikely to be available historically, so it is defined in relation to the dam
height. Sedimentation within the reservoir is ignored, since it is the distance of fall that is of most
interest. Given overtopping, the depth of overtopping is added to the height of the dam. In the
absence of overtopping, the distance to the reservoir pool below the dam crest is subtracted from
the height of the dam.

Breadth of the Dam (B)

The breadth of the dam is the distance between abutments at the dam crest.

Volume of Release (Vol)

The volume of release is the volume of impounded water at the time of failure that is
subsequently released during the failure event. It does not include additional inflows into the
reservoir after failure has begun in earnest.

Rate of Failure (Rf)

Not strictly a rate, Rf is the number of minutes it takes until at least 80% of the breach
has developed from the time failure begins in earnest. The reason 80% is used is to distinguish
the main breach from the residual erosion which may continue throughout the failure event and
the minor erosion which precedes catastrophic failure. Rf may be thought of as the “most rapid”
80% of the failure.

To help standardize eyewitness accounts, when a failure is described as nearly

99 <¢

instantaneous (i.e., “as an explosion”, “quicker than you can write these words”), Rf should be
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assigned a value of 0.5 minutes. If the failure is a very rapid erosion or slope failure but falls
short of near-instantaneous, it should be assigned 5 minutes unless evidence suggests a more
precise value.

Area of Final Breach (A)

The area of the final breach is measured perpendicular to the direction of flow when the
breach is fully developed. For consistency, it is measured to the top of the original dam crest
unless the breach does not extend to the top.

Spatial and Temporal Relationships

between Par; and the Flood

Summary of Month/Day/Year, Hour,
and Day of the Week (T)

The variable T is simply a designation for the complete textual record of the time of
failure. Aspects of T are coded symbolically to facilitate analysis using time of day (Td), time of
week (Tw), time of year (Ty), and time of season (Ts) described in the subsequent sections.

Time of Day (Td)

Code Td as follows:

N
S

night (most people are asleep; 11:30 PM — 6:00 AM).

separation (most families are separated by school or work; 8:00 AM — 6:00 PM on
weekdays).

H = home (most families are together; 6:00 — 8:00 AM, 6:00 — 11:30 PM; weekends,
holidays, and when Par; is dominated by recreationists and it is not night).

Notice that this variable says something about the lighting conditions, the ease of warning
notification, the time required to begin an evacuation, and whether or not families are together.

Time of the Week (Tw)
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Tw is coded dichotomously:

Wend = weekend
Wday = weekday.

Time of the Year (Ty)

Ty is simply the month, coded as 1 — 12, beginning with January and ending with
December.

Time of the Season (Ts)

Ts indicates the season of the failure. It has relevance to environmental conditions such
as the temperature of the air and water, the lighting conditions, and the willingness of people to
leave their homes. Here, the variable is coded dichotomously:

S
W = winter (November — April).

summer (May — October).

Warning Time (Wt)

Warning time (also known as the initial warning time) is defined as the difference in time
from when the first warning is given of a dam break or of an impending dam break and the time
when the leading edge of potentially lethal flood waters first arrive at the leading edge of Par;
from the failure. “Potentially lethal flood waters” are described under Par, above. A flood is
generally considered potentially lethal once it exceeds 1 — 2 ft in depth. “First warning” is the
warning that first reaches a member of Par;, is intended for dissemination, and encourages
evacuation. As such, contrary to previous definitions of warning time (i.e., U.S. Bureau of
Reclamation, 1989), Wt does not necessarily begin with a public safety official.

Individual Warning Time (Wt;)

Wt; is the increment of time from when an individual first receives news that the
condition of the dam warrants evacuation and the floodwaters gain lethal potential at the location
where the individual was when the news was received. The news can come from any source,
official or otherwise, human or environmental.

Note that the symbol Wt; can also indicate the value of Wt for a particular Par;. Since
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warning time (Wt) and individual warning time have different definitions, with individual
warnings able to come from more types of sources, it is important to note the contextual use of
Wt;. Individual warning time (Wt;) is the same as individual escape time (Wt.) below, except Wt
can be extended as one tries to outrun the flood.

Individual Escape Time
(warning time for escape) (Wt,)

Wt. 1s the increment of time from when an individual first receives news that the
condition of the dam warrants evacuation and the floodwaters reach lethal potential at the place
to where the individual has fled or the location where the individual exits the flood zone. This 1s
the most meaningful definition of warning time because it is the only one that measures the full
time it takes to be overrun by the flood wave. Unfortunately, unless it can be accurately
estimated on a case-by-case basis, it has little practical value.

Average Warning Time (Wita,)

Ideally, the average warning time would rely on the individual escape time (Wt.) in place
of the individual warning time (Wt;), each defined above; but realistically the average warning
time (Wtay) must be the lesser of Wt; and the warning provided by sensory clues (Sc) averaged
across the population. In practice, Wt,y, will be an approximate estimate of the average interval
members of Par; have from the time they first become aware of the danger until the time the
flood waters reach the ground above which they occupied at the time of awareness.

Wty 1s based on warnings from any source, including sensory clues (Sc), and so Wt,y, is
never less than Sc, but it can be more than the warning time based on the first formal warning
(Wt). Wty includes informal warnings from passing motorists or neighbors, but it considers
warnings only after they are clearly understood and viewed by the general population as credible.
For example, motorists honking their horns might alert people that something is happening, but it
would not be a warning until shouts or sensory clues made the danger comprehensible. Likewise,
officials might advise a population that a dam is in danger of failing (making Wt long) but if
there has been a history of false alarms, the population might not mobilize until a more credible
warning is initiated (making Wt,,, much shorter).

Building Types by Percent (Bt)

Bt represents a community profile within the flood zone. It is coded as follows:

N = none.

T = tents.
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Sh =

shacks or flimsy buildings.

M = mobile homes or RVs.

R = residential homes.

C = one story commercial or commercial of unknown height.

H = commercial over one story.

Lm= structures with less mobile populations (hospitals, nursing homes, schools).
Development (Dev)

Along with building type (B)t and goodness of fit (Gf), development (Dev) helps profile
a community. Dev measures the degree of urbanization, and is coded as follows:

N = none (rural, communities under 100).

L = low = small town.

M = medium = suburban.

H = highly urbanized; large city, densely populated, potentially tall buildings.
Goodness of Fit (Gf)

Gf is a spatial variable that describes the variance in exposure faced by members of Par;
by indicating their spatial homogeneity or heterogeneity with respect to the river. It is called
goodness of fit because it suggests the degree to which other variables accurately represent
individual members of Par;. A low (poor) Gf implies that many individuals are exposed to a
lower degree than group variables imply and a high (good) Gf implies that the entire Par; is well
represented. Note that Gf provides a measure of development/urbanization, proximity to the
river, and uniformity within a community—issues also addressed by excess evacuation time (E),
warning effectiveness (We), development (Dev), and striking characteristics and valuable
quotations (Schvq). Gfis coded as follows:

L:

low = poor (a large, urban area; multiple communities over a long reach of river;
wide flood plain; mix of canyon and open plain; variable values would suggest
excessive danger more often than not if applied on the individual level).

moderate = satisfactory (a typical small town or mountain community with some
residences near the river and some on higher ground or in the hills; a series of
small communities with similar warning time; a wide flood plain with
urban/suburban development among which the flood rises slowly).
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H = high = good (all of Par; reside within a narrow flood path; small canyon
community clustered along the river; campgrounds; very small Par in a similar
location, such as a few cars at a flooded road).

V = very high = very good (a huge wave which submerges an entire community
without warning; a wave which annihilates virtually every structure within the area
of Par;; no basis for saying some members of Par; are less exposed or safer than
others and no time to escape before the flood arrives).

Outdoors (O)

Outdoors is a dichotomous variable, defining whether or not at least a significant
minority of persons are outdoors. This has bearing on when sensory clues might be picked up,
the rate at which people are likely to run for high ground, the rate a short warning might spread,
and the level of protection available if escape cannot quickly be obtained. Tents are considered
outdoors. A fairly subjective variable, guidelines would suggest:

I
O

indoors (winter, work hours, night).

outdoors (summer, recreationists, campgrounds).

One would expect this variable only to have relevance when warning time is extremely
short.

Sensory Clues (Sc)

Even without an official warning, individuals might have several minutes notice of an
approaching flood wave if there are visual or auditory clues, such as breaking trees or the sound
of thundering water. Using testimony of survivors, the average length of this warning should be
quantified in minutes, using zero when virtually everyone was surrounded before the flood was
detected (this is more likely at night).

Preparedness (Pr)

Pr defines the degree to which a Par; is prepared to evacuate at least half an hour before
the technical definition of warning time (Wt) officially begins. The scale ranges as follows:

N = none (not aware of the potential for danger 0.5 hr before Wt begins).

L = low (aware the safety of the dam is in question, but it is not considered serious).

M = moderate (alert to the potential for evacuation or experienced in evacuation).
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H = high (expecting to evacuate and concrete steps toward that eventuality).

This variable considers qualitative factors like previous news reports regarding the dam,
false alarms, evacuation rehearsals, alerts that fall short of warnings, experience of the
community with flooding, and other aspects of testimony to define how quickly a community
would likely respond to an official warning.

Warning Effectiveness (We)

Warning effectiveness describes how effectively a warning campaign mobilizes a
community for evacuation. Ideally, it would include the percentage of Par; receiving a warning,
the rate the warning propagates, and the effectiveness of the warning in initiating prompt
evacuation (its believability and urgency). However, since these aspects are not readily
quantifiable, We often resembles a categorical form of Tpar:

N = no official warning.

L = low (fewer than 50% receiving or believing a timely warning).

M = moderate (up to 90% receiving and believing a timely warning).

H = high (virtually complete evacuation before the flood wave arrives).

Evacuation SubPar (Epar;)

Epar; are subsets of Par; in which the subsets are characterized by the same representative
evacuation time (Ret, defined next). These Epar; need not have equal numbers, and the number
of groups can be one or more depending on the degree of heterogeneity within a given subPar.

Representative Evacuation Time (Ret))

Defined for use in calculating E (below), Ret; is a categorical variable used to typify the
number of minutes it would take to evacuate each Epar; without the evacuation being interrupted
by the arrival of the flood. It does, however, take into account the degree of urgency felt by the
evacuees. Ret; does not include warning delays as a warning propagates through a community,
but it does include the time required for a warning to propagate through a given building. For
example, if a mother is awakened by the sound of an approaching flood or an official knocking at
her door, Ret; includes the time required for her to recognize the danger, awaken her husband,
throw on minimal clothing, gather her sleeping children, decide what possessions to grab and
where to go, warn a neighbor or two if she feels there is time, and run with her family across the
floodplain to the safety of the hillside. Since excess evacuation time (E) is based on the average
warning time (Wtay,), each building leader in Epar; theoretically receives a warning at the same
moment.
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Ret; are based on the likely choices of individuals, even if those choices are not the most
expedient. For historic events, Ret; considers actual evacuation times and delays among the
threatened population (Tpar). Ret; extends when individuals reenter the flood zone to retrieve a
belonging, to reach their family, or to help others. Important considerations include the time of
day (Td) (whether people are asleep or awake and whether families are together or separated),
the distance of buildings from the edge of the flood zone, barriers such as fences or streams, the
travel distance to safety by road, the likelihood of congestion or transportation bottlenecks,
whether prior flooding has blocked roads or bridges, the availability of personal or mass
transportation, the time individuals will take to gather important possessions and warn others, the
urgency of the warning and the perceived threat of the approaching flood, the anticipated time
remaining before the flood arrives, and the general mobility of the Epar;. Are there nursing
homes, hospitals, schools, retirement communities, populations with language barriers or high
levels of distrust, or other populations in the flood path that might need extra time to evacuate?

The section on evacuation rates in Chapter VI provides many insights regarding the
factors that have influenced Ret; during the events characterized in the unpublished working
documents. Still greater detail is provided in the unpublished working documents themselves
under Ret; for each of the characterized subPar. Table 5.1 provides a starting point for estimating
Ret;.

Excess Evacuation Time (E)
(ease of evacuation)

When an individual’s evacuation time is less than her individual escape time (Wt.), he or
she escapes the flood. If an individual’s evacuation time is greater than Wt., he or she must find
a refuge or fight the flood to survive. The margin of safety reflecting the average excess
evacuation time is the ease with which a population can evacuate. It can be positive or negative.
Hence, excess evacuation time (E) is the difference between the time needed for evacuation
(Ret;) and the time available (Wt,y,), both of which are averages. For practical reasons, E should
be defined using a larger scale than the individual. It can be normalized as follows:

ZEparj *Wt,,, —Ret))

_ A
E =
Par,

The representative evacuation time (Ret;) and evacuation subPar (Epar;j) were previously defined.
When Epar; is equivalent to a homogeneous subPar, the equation reduces to the average warning
time minus the representative evacuation time (Wt,,z — Ret;). When E is negative, it means the
average evacuation time needed was greater than the time available.
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Table 5.1.

Representative evacuation times (Ret;) for a single household on foot, neglecting

the effects of barriers like fences and streams

Range of

Width | Outdoor Evacuation Times
ofthe | Distance | Dev fo(r a Fami)ly Ret;
Flood minutes )

to %gety (N, L, | Sense of | Mobility (minutes)

(ft) M, H) | Urgency | (L, H)* Day Night | Day | Night
1,000 300 N-M High H 05-3 1-6 1 2
1,000 300 N-M High L 2-10 | 4-15 4 6
2,500 1,000 N-L High H 3-6 | 4-10 | 4 7
2,500 1,000 M-H High H 3-10 | 4-15 6 8
2,500 1,000 N-H High L 3-10 | 5-15 6 8
5,500 2,500 M High H 5-20 [ 5-30 | 10 15
5,500 2,500 N-M High L 10-30 | 10-30 | 15 20
B . L-group 20 — 30—

5,500 2,500 M-H High home 180 180 45 60

*L implies one person with limited mobility living with one or more others with normal (H)
mobility. The final row is an exception, where a nursing home or similar facility is in view.
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Natural Circumstances that
Attend the Flood

Failure Mode (Fm)

Fm can be coded using the following symbols:

I = internal.

Ip = piping.

Ie = embankment failure: sliding, overturning, foundation failure, or blowout with
normal water levels.

F = flooding.

= flooding (dam failure not present or not relevant).
Ff = flash flood (no dam failure).
Ff/D= dam failure contributes little volume to a dominant flash flood
Fo = failure due to overtopping or spillway washout.

Fe = embankment failure: slumping, sliding, overturning, foundation failure, or
blowout during overtopping or reservoir elevations significantly higher than those
for which the dam was designed to ordinarily operate.

S = seismic failure.

Sp = piping or other gradual development following an earthquake.

Se = arapid embankment failure during or shortly after an earthquake.
G = gate failure not leading to dam breach.

L = landslide not leading to dam breach.

Attendant Circumstances (Ac)

Ac refers to conditions that attend a flood, the presence of which can increase the fatality
rate of the event. Examples include an earthquake, extreme weather conditions such as snow or
ice, hurricane-force winds, extreme prior flooding, or a downed radio tower.

It should be noted that power failures, darkness at night (Td = N), and rain are common
features of many floods, and the latter two are already noted in the variables time of day (Td) and
local magnitude of loading (Ml). As such, they should only be included under Ac if their impact
was exceptional.
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Attendant circumstances should first be described, then corporately assigned a subjective
rank based on the impact the circumstances had on variables like warning time (Wt), excess
evacuation time (E), and rise rate (R). These ranks are:

N

none.

L = low impact.

M = moderate impact.
H

= heavy impact.

Magnitude of Loading (M)

M is a description of a storm over the watershed, the magnitude of an earthquake as
experienced at the dam site, the size of a flood wave from an upstream dam failure, or some
other narrative description of the loading which leads to dam failure. Descriptions including peak
rainfall rates and depths and their return period would be typical. Although most hydrologic
failures are likely to be coded as very large (V), internal failures during fair weather are more
likely to fall in one of the other categories. Also, one purpose of M is to provide a baseline
against which the local magnitude of loading (MI) can be compared to determine whether local
residents experienced the severity of rainfall that led to a hydrologic failure. M should then be
coded as follows:

N = no external loading (i.e., an internal failure).

L = low = small (loading is common; could be expected every few years).

M = moderate (loading is infrequent; once every 5 — 15 years).

H = high = large (loading is uncommon; could be expected once every 15 — 50 years).
V = very large (loading is quite rare; could be expected once every 50 — 100 years).

E = exceptionally large (loading is difficult to imagine; more rare than 1/100 years).

Magnitude of Local Loading (Ml)

Ml is coded in the same manner as magnitude of loading (M), but it pertains to the local
conditions experienced by Par prior to the flood wave arrival.

Human Circumstances that

Attend the Flood
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Dam Type (Dt)

It is possible that Dt can be combined with variables like height of the dam (H), peak
velocity (V), failure mode (Fm), and rate of failure (Rf) to categorize the potential lethality of a
reservoir or to facilitate future studies into the likelihood that a particular type of dam will fail.
Dt should be identified as follows:

N = none (i.e., a flash flood or other FIt).
= earthen.
= rock fill.

masonry.

= concrete gravity.

> 0z % o
I

= concrete gravity arch.

Rescue Resources (Rr)

Rescue resources include such things as rescue helicopters, the availability of the
National Guard or another branch of the military, paid or volunteer firefighters or police officers
located close to the Par;, emergency management and evacuation personnel, communication
systems not dependent on utilities susceptible to damage or network overload, earth-moving
equipment, utility vehicles, and boats.

Sometimes a community can prove extra heroic, with volunteer rescuers either increasing
or decreasing the rate of life loss. Due to its mixed implications and difficulty of measurement,
heroism should not be included as a separate rescue resource. However, rescues often involve
simple tools like garden hoses and human chains, and these should be recognized as rescue
resources. Rr provides a way of normalizing failures, whether they were in remote or readily
accessible areas, and whether they occurred before or during the modern era.

This variable is probably most relevant when floods are expansive in large, metropolitan
areas. It is significant that the evacuation plan for the City of Sacramento, California, which is
below Folsom Dam, indicates some areas as “evacuation areas” and others as “rescue areas.”

R can be categorized as follows:

N = none (rescuers are prevented from assisting until the next day; victims are
overwhelmed so quickly that no rescue attempts are feasible).

L

low = limited (rescuers are able to help some people, but they are mostly limited to
hand tools: ropes, rowboats, floating debris, human chains, etc.).
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M = medium = modern (modern communication, transportation, and rescue resources
are available locally, at least in moderate supply; generally reflects the state of
development present in urban areas of the USA after 1950).

H = high = exceptional (large numbers of military or rescue workers stationed nearby,
immediate access to many local helicopters, an abundance of boats in the
community; plenty of floating debris, trees, tall buildings, or hills to sustain
victims until they can be rescued; modern wireless communication systems; state-
of-the art early-warning and evacuation system).

Detectability (Det)

Det ranks the extent to which there are signs of imminent failure more than 3 hr before
the dam begins to breach or the degree to which the breach could be predicted by monitors at the
dam.

N = no signs of trouble.

L = low (one or more minor changes at the dam, but would not lead the typical dam
monitor to anticipate failure).

M = moderate (sufficient changes to consider altering the reservoir operation as a
precaution, but would not lead a typical monitor to expect failure within the year).

H = high (evidence demanding immediate attention, as it suggests a dam failure is not
unlikely if no action is taken).

V = very high (dam failure appears probable or imminent and can not be readily
avoided).

Striking Characteristics and
Valuable Quotations (Schvq)

Schvq is a narrative summarizing those aspects of the failure which stand out, might be
fairly unique, or are not adequately described in the variables above. This might include
eyewitness descriptions of the event.

To code this variable, it should be viewed as a general description of how well the overall
set of variables describes the event:

L = low = poor (existing variables do a poor job of fully capturing the unique attributes
of this flood event).
H = high = good (existing variables do a good job of fully capturing the nature of this

flood event).
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Important Variables Brought to Light

During Characterization of Events

Pre-failure Warning Time (Witpf) and
Post-failure Warning Time (Wtpof)

Witpf and Wtpof provide a means of differentiating between the length of potentially
urgent post-failure warnings and the total length of warnings that may begin with less urgency or
credibility before a dam actually fails. Wtpf indicates the full length of warning time (Wt) when
it begins prior to failure. Wtpof does not start until failure begins. Hence, if Wt begins an hour
before failure and the flood travels for 30 minutes, Wtpf = Wt = 90 minutes and Wtpof = 30
minutes.

Wall of Water Weighted
by the Rise Rate (Wwr)

In order to combine events with and without a wall of water, the depth can be weighted
according to the rise rate. Hence, Wwr = the value of wall of water (Ww) or, if Ww = 0:

a) Wwr = a*D (the peak flood depth (D) multiplied by coefficient a) when the rise rate
(R) = very fast (V).

b) Wwr =b*D (the peak flood depth (D) multiplied by coefficient b) when R = H.
c) Wwr =1 ft when the rise rate is moderate (R = M).

In these equations, a and b are constants less then 1 that reduce D appropriately to
account for extra evacuation time during slower rise rates. Their values should be specified, but
they may be adjusted if it improves the usefulness of Wwr.

Basis of Par (Bpar)

When warnings proceed failure, or people anticipate a failure, evacuation can proceed in
two distinct phases: part of Par evacuates as a precaution and part of Par remains behind to see
what happens. In such cases it is sometimes convenient to treat those who remain behind as Par,
since more is known about this group, and to characterize every variable accordingly. For
example, the average warning time (Wt,,) would be based on the warnings that the second
group takes seriously and the representative evacuation time (Ret;) would measure the time
needed to evacuate once they chose to do so. Bpar indicates whether the true subpopulation at
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risk (Pary) is in view, or whether Par; is redefined to include only the remnant who delay to see
what will happen. Bpar is coded as follows:

Pre =pre-evacuation, meaning before any evacuations have begun.

Post=

post-evacuation, meaning Par is based on those left behind after the first group
leaves and the threatened population (Tpar) is the number who become trapped in
the flood.

Par Type (Pt)

Pt refers to the physical environment surrounding a given subPar or fraction of a subPar.
When recording the codes for Pt, each symbol should be listed separately and, when possible,
tagged based on its percent of Par;. When the components of Par are not known, Pt should be

designated U.

C =

MW
Il

—
Il

campers, including recreationists hiking/walking/standing near the river.
those in the river: wade fishermen, swimmers, rescue workers, etc.
those on the river: boaters and rafters.

those in or on a lake: boaters and swimmers.

employees who are at the dam for construction, repairs, monitoring, failure
prevention, etc. Note, it may be desirable to reclassify this Pt as D, W, or another
overlapping category for purposes of analysis.

automobile drivers or passengers.
people occupying a train.

those who, prior to evacuation, are in or near buildings. This corresponds to
general drowning deaths in town. These people might encounter the flood while
indoors, while evacuating on foot, or while evacuating in a vehicle, but generally
speaking, they were quantified based on structural damages and the mode or place
of death may not be known.

unknown mix. Whenever possible, subPar should be broken down into pure Pt (C,
W, B, L, Af, or D) to facilitate characterization and analysis.

Proportion of the Threatened
Population (Ptpar)

Ptpar is similar to the proportion of lives lost among the Par (P = L/Par), except that Ptpar
is the proportion of lives lost among the threatened population: Ptpar = L/Tpar.
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Evacuation Nonsuccess Factor (Ef)

Ef is the proportion of Par remaining in the flood zone when the flood arrives: Ef =

Tpar/Par. Tpar and “flood arrival” are defined in such a way as to ignore trivial flooding that
does not greatly hinder free movement (generally 6 — 12 inches for waders close to the hillside
and lesser depths for those evacuating by automobile).

Havens: Safe Havens (Sh), Chance Havens
(Ch), Pseudo-safe Havens (Psh),

Aerated Havens (Ah), and

Compromised Havens (Coh)

Havens are discussed at length in Chapter VI based on historical insights. Each variable

1s described below.

Safe havens (Sh). Safe havens may or may not be flooded, but they represent places of

shelter in which deaths have historically been extremely rare. When deaths occur, they generally
involve young children or persons of limited mobility who cannot swim and are trapped in an
area without another person of average ability to assist them. Safe havens include the following:

1.

An upper story with sufficiently shallow flooding that occupants are not washed out a
window and can float on a bed or stand freely. These conditions are generally maintained
when the flow does not rise more than one foot above the windowsills in the highest story
(about 3 ft above the floor) and the building is not destroyed.

Quiescent flooding that does not trap people without air. When flooding is relatively
quiescent, people readily keep their heads above water by treading water, standing on
stationary platforms such as counters, floating on beds, or by clinging to floating furniture. If
such flooding does not persist to the point where it would lead to extreme hypothermia or
exhaustion, a relatively safe haven is maintained even when waters come within 1 ft of a flat
ceiling or 2 ft of the peak of a sloped ceiling, whether or not the ceiling is elevated.

3. An attic that is accessible from within a house or trailer home.

A rooftop: The important point is not that safe havens in buildings are equally easy to reach,
but that if some people can reach them, they preserve a means of shelter that is likely to
reduce life loss across a subPar compared to situations in which every building is obliterated.
Means of access might include an internal or external fire escape, a roof door, or a dormer
window. During 19" century floods, there were many examples of people using a bedpost or
other sturdy object to poke a hole in a ceiling or wall to reach shelter. Similar access to a roof
might be possible through many attics today. People have also been known to climb objects
like drainpipes or trellises, or to intentionally use the current to float up to the roof while they
cling to such objects. However, when rooftops must be accessed through highly unreliable
means and people must apparently rely on chance to be successful, they should be treated as
chance havens.
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5. A stout tree that is easy to climb, taller than the flood, and not toppled.

6. Any island or region that experiences shallow flooding during the peak of the flood, such
that depths are easy to resist while standing or clinging to convenient anchors like telephone
poles or lampposts (depths of 1 — 5 ft, depending on the velocity).

7. The hillside beyond the flood if a member of the threatened subpopulation (Tpar;) can readily
drive or wade to it while the flood is still shallow, or if they can reach it directly from the
roof or an upper story.

Chance havens (Ch). If debris does not crush or fatally wound flood victims, it can
provide a means of floatation that has saved many lives. Debris is defined as a chance haven
rather than a safe haven because its availability and pathway cannot be readily predicted, its
benefits are unreliable, and it can directly cause life loss when not a benefit.

Chance havens are refuges in the flood, including other types of havens, that are reached
primarily by chance or whose benefits are highly unreliable. As such, they contribute
significantly to the variance in fatality rates across similar events.

Chance havens fall into at least five categories:

1. Rafts and floatation aids: severed rooftops, mattresses, propane tanks, logs, etc.

2. The roofs of floating buildings: Because it is both more difficult and more dangerous to reach
and remain on a rooftop after a building begins to drift, lurch, spin, or sink, rooftops should
be treated as chance havens whenever a building drifts more than 100 yards. Although
somewhat arbitrary, choosing 100 yards seeks to standardize the approach of analysts in a
way that seems to reflect the trends in the historic events analyzed in this study. Based on
historic damage patterns and life loss, buildings that drift less than 100 yards are more
appropriately considered pseudo-safe havens most of the time. This is explored more in
Chapter VI.

3. Stationary structures: any immobile refuge that is reached while drifting, including rooftops,
upper-story windows, aerated havens, treetops, overhanging branches, debris dams at bridges
that allow victims to walk to dry land, and the shore itself. If people must rely heavily on
chance to reach a largely inaccessible roof, this would also constitute a chance haven.

4. Aquatic havens: any location from which shore can be easily reached, such as a lake or a
quiescent backwater, without fighting high velocities.

5. Wading havens: These are rare, falling in the narrow range of depths and velocities that are
too high to be considered safe havens and too low to consistently sweep people away. Due to
debris, waves, and unpredictable turbulence, such chance havens would not typically last
long (see Figure 13 shown later).

Pseudo-safe havens (Psh). Pseudo-safe havens are safe havens on or in buildings that
become reclassified once the building begins to drift. They are a hybrid between safe havens,
which are static and predictable, and chance havens, which depend on the whims of the current
and the debris load. They exist only among a subset of buildings with major damage (see Loss of
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Shelter, Ls). As indicated above and in Chapter VI, rooftops are considered chance havens (Ch)
rather than pseudo-safe havens when a building drifts more than 300 ft.

Acrated havens (Ah). Aerated havens are typically found only when parts of stationary
buildings are torn away (the upper end of Ls = M). They are those pockets of protection formed
by the remaining walls, floor, counters, etc., that provide a place for survival if the occupants are
fortunate enough to have been located in that portion of the building. They are not safe havens
because their locations depend in part on chance, and great strength, stamina, and good fortune
may be required to resist being swept away in the face of increased exposure. However, they are
not chance havens because they are most likely to form in locations where people are most likely
to seek shelter—that is, in the most protected sections of temporary safe havens. For those who
occupy an aerated haven (Ah), survival would generally be more likely than for those already in
the open current and less likely than for those in a safe haven.

Compromised havens (Coh). This simply places pseudo-safe havens and aerated havens
in a single category. These two havens are likely to be highly variable with respect to life loss,
with rates similar to safe havens when the haven is modestly compromised and with rates
approaching that in the open flood when the haven is severely compromised.

Loss of Shelter (Ls)

Loss of shelter apportions Par; based on the loss of safe havens (Sh), pseudo-safe havens
(Psh), and aerated havens (Ah) in or on buildings. As such, it is a refinement of forcefulness (F)
and similarly relies on damage and destruction (Dd) for guidance. However, unlike F or Dd, Ls
records the proportion of Par;j associated with four levels of shelter loss:

L = low loss of shelter = no structural damage or minor structural damage limited to
flooding on the first floor.

M = major loss of shelter = major structural damage.
H = high (complete) loss of shelter = total destruction.
Mh = highly uncertain whether Ls = M or H.

To expound on each of these categories, it is important to realize that Ls is not the same
as economic damages. Lives are lost within buildings when occupants fall into water in which
they cannot swim; become trapped underwater as a room fills to the ceiling; get struck by large,
external debris penetrating from outside; get struck or trapped underwater as the building breaks
apart; or get washed through a wall or out a door or window into open water. As such, the critical
question is not the degree of economic damages or whether a building should later be
condemned, but whether or not a structure maintains an accessible safe haven, pseudo-safe
haven, or aerated haven for the duration of a flood.

It follows, that loss of shelter is not synonymous with the definitions used by the
American Red Cross or other agencies to define housing damages. Ls = L implies relatively safe
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havens on every floor, Ls = M implies complete loss of a safe haven on the first floor, and Ls =
H implies complete loss of all safe havens, pseudo-safe havens, and aerated havens, including
any accessible rooftop. Since loss of a safe haven is generally accompanied by structural
damage, traditional categories of minor and major damage generally agree with Ls =L and Ls =
M when they are based on structural damages and not mere water damage. By contrast, Ls = H
only if no accessible, aerated pockets of protection remain, regardless of whether a building
floats off its foundation or is later condemned.

The following refinements, based on historical observations, should be kept in mind
(largely copied from Chapter VI):

1. Ls=L. Almost every room has a counter, desk, couch, table, chair, bookcase, bed,
dresser, piano, or other piece of furniture that can provide an elevated platform or a floatation
device during a flood. When a flood is relatively quiescent, with few exceptions, these objects
and a little swimming allow people to keep their heads above the water surface even when the
flood nears the ceiling. While elevated ceilings could pose a special problem, a flood reaching
such depths without causing major damage would necessarily be very calm, making it easier to
cling to floating furniture, tread water, or hang onto rafters. This has been demonstrated in
commercial buildings. Hence, Ls = L when there is minor structural damage and the flood does
not encroach within a foot of the first-floor ceiling or within 2 ft of the peak of a sloped ceiling.

2. Ls =M. If the highest accessible floor (including an accessible attic) is filled with
water beyond 1 ft of the ceiling, but the flood does not crest an accessible roof, Ls = M rather
than H because an accessible safe haven remains. If walls are ripped off but portions of walls and
floors or counters remain to shelter occupants from the main current or to provide something to
which they might cling, the loss of shelter is major; but if only trivial structural members remain
such that all shelter is lost, the dwelling is destroyed.

A building is destroyed any time it is torn apart and submerged in the flood. However, if
a building floats off its foundation and maintains an accessible pseudo-safe haven for the
duration of the flood, Ls = M.

3. Ls=H. If arooftop is inaccessible, a building is destroyed when the top floor or
accessible attic is completely submerged. If a rooftop is accessible, the building is considered
destroyed only if the flood or flood waves wash across the crest of the roof to an extent likely to
wash people into the flood. Since the momentum of the flood riding the slant of the roof will
cause waves to run up, this elevation is generally on the order of a foot or two below the roof’s
crest.

4. Ls=Mh. Ls = Mh means that, based on uncertainty, analysts view Ls =M and Ls =
H as having roughly equal probabilities. It is a category that applies primarily when estimating
Ls for hypothetical floods. Based on the current state of the art, it is unlikely that analysts will be
able to predict the boundary between Ls = M and Ls = H with great precision. Ls = Mh is a
subset of the pseudo-chance zone defined below.

Weighted Loss of Shelter (Lsw)
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Historical analysis is greatly facilitated when loss of shelter (Ls) is homogeneous—that
1s, when Ls = H100%, M100%, or L100%. When Ls is mixed, however, life-loss trends can still
be explored by placing the overall mix of damages on a scale from 0 to 1. The scaled value is
called the weighted loss of shelter. The weights assigned to each type of damage (L, M, and H)
should correspond to the relative historical lethality observed among structures with each
category of damage. These relationships can be determined from cases for which Ls was
homogeneous.

Theoretically, proportion of the threatened population that perishes (Ptpar; = Li/Tpar;)
should tend to increase as safe havens are removed by the flood. Thus, when every structure is
swept away and destroyed, Ptpar; should be greatest and such structures should be given full
weight (Wy = 1). If one relies on average values across homogenous subPar, the correct weight
for Ls = M would be Wy = (avg. Ptpar; for Ls = M100%)/(avg. Ptpar; for Ls = H100%). In the
same way, the correct weight for Ls = L would be Wi, = (avg. Ptpar; for Ls = L100%)/(avg.
Ptpar; for Ls = H100%). A weight of zero applies if the average ratio of life loss is zero.

Lsw=1*(Ls=H) + Wy*(Ls=M) + W *(Ls =L) where Ls =H, Ls =M, and Ls =L
each represent the percentage of Tpar; (or Par; if the distribution of Tpar; is unknown) associated
with structures in the respective damage categories.

Flood Zones: Safe Zones (Sz),
Compromised Zones (Coz),
Chance Zones (Cz), And
Pseudo-Chance Zones (Pcz)

When one includes the open current and depths in which successful wading is highly
dependent on chance, a flood can be divided into four zones with unique life-loss distributions.
Each zone is described below.

1. Safe zones (Sz). This includes all safe havens. These provide a high degree of safety
and a consistently low rate of life loss. Havens that have been only mildly compromised have
similar life-loss characteristics and so should be included. The proportional life-loss distributions
in safe zones should closely approximate that for loss of shelter (Ls) = L.

2. Compromised zones (Coz). That central portion of compromised havens that have not
been purposely classified as safe zones or pseudo-chance zones. Because the tails are accounted
for under pseudo-chance zones and safe zones, the proportional life-loss distribution should
closely resemble that when the severity of structural damage for loss of shelter (Ls) = M is in the
central 60% — 80%.

3. Chance zones (Cz). The places where people are submerged or face the open flood,

and all chance havens that might be reached while drifting. The proportional life-loss distribution
in chance zones should closely approximate that for loss of shelter (Ls) = H.
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4. Pseudo-chance zones (Pcz). There is a range of depths*velocities, unique to each type
of building, for which it is unclear whether a structure is most likely to be destroyed, float far
downstream, or experience severe damage that leaves only aerated havens. In such cases, life
loss (L) = Mh, meaning L = M or L = H. Similarly, there is a range of depths*velocity for which
it is highly uncertain whether people will topple or be able to wade. Combined, these locations
comprise the pseudo-chance zones. The proportional life-loss distribution for pseudo-chance
zones should closely approximate a combination of the relevant portions of the proportional life-
loss distributions for Ls = H and Ls = M.

Zone Densities (Zd): Safe Zone Density (Szd),
Compromised Zone Density (Cozd),

Chance Zone Density (Czd), and
Pseudo-Chance Zone Density (Pczd)

Density represents the distribution of the threatened population (Tpar;) among flood
zones based on topographic, structural, and hydraulic considerations as they interface with flood
routing and the rise rate of the flood. The word “density” refers to the number of people who
have access to a category rather than to the physical dimensions of flood zones themselves.
Access includes the physical ability to move to a location and sufficient time to get there before
being cut off by the flood.

Density is predicated on the historic pattern that most members of Tpar; will seek out the
safest haven they can reach in the time available. A more expansive list of insights and
justifications can be found in Chapter VI. The result of these insights is that we can apportion
Tpar; among the flood zones its members are most likely to occupy by apportioning the
accessible physical havens and by associating them with the average number of Tpar; likely to be
nearby based on census data. Accessibility is cut off if the flood rises too quickly, but this is
rarely a concern when loss of shelter (Ls) = M, the usual case in which densities are widely
distributed.

Thus, Szd, Cozd, Pczd, and Czd each represent the number of people expected to be in
each of the corresponding flood zones. People can be expected to choose Sz, Coz, Pcz, and Cz in
that order, as they are available. People should be assigned to the highest level that persists for
the duration of the flood, with the understanding that they are only assigned to Cz if the haven
they previously reached ceases to exist.

Life Loss Zones (Lsz, Lcoz, Lpcz, Lcz)

Zones of life loss are analogous to the life loss specific to a subPar (L;), except that they
are specific to the safe zone (sz), compromised zone (coz), pseudo-chance zone (pcz), and the
chance zone (cz).
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Proportion of Lives Lost in Zones
(Prsz, Prcoz, Prpcz, and Prcz)

The proportion of lives lost in each zone is analogous to the proportion of the threatened
population that perishes (Ptpary), except that it is specific to one of the zones sz, coz, pcz, or cz
(defined above). Note that “proportion” is designated with Pr instead of the traditional P in order
to avoid confusion between the pseudo-chance zone (Pcz) and the proportion of lives lost in the
chance zone (Prcz).

Tools For Researchers

Appendix D contains several tools that can help readers and researchers keep track of the
many variables presented above and some of their subtleties. Table D.1 is an alphabetical list of
every variable in Chapter V. Table D.2 is a summary table of every variable, their names, their
symbols, the codes used for nominal and ordinal variables, a brief description of each code, and
the units. An abbreviated version of Chapter V and a copy of the template used when
characterizing events for Appendix B follow in Appendix D.
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CHAPTER VI
INSIGHTS FROM HISTORIC FLOOD EVENTS

Modes of Death and Means of Survival

According to a thorough study of the unpublished subPar characterizations, deaths have
historically occurred in the overlapping contexts presented in Table 6.1. People have survived
catastrophic floods through the means presented in Table 6.1.

Pieces of the Life-Loss Puzzle

This section lists qualitative insights from historic case studies that have sufficient
support that they were evaluated to be highly reliable. Many but not all of the case studies are
thoroughly characterized in working documents that underlie the summary in Appendix B. In
those working documents, the observations are carefully supported by reference to several
hundred source documents, subsets of which are listed at the end of each event to which they
pertain.

Only a modest effort has been made to index these insights to the events underlying
Appendix B for the following reasons:

1. Dozens of statements from survivors, eyewitnesses, and researchers from many different
events support most of the observations.

2. While the working documents underlying Appendix B include careful records of source
materials, such statements were often not critical in characterizing the cases and so they were
only summarized or not recorded.

3. The most pertinent information was discovered iteratively as more and more events were
characterized.

4. While reading through events to identify those most easily characterized, insights were
gleaned or reinforced from events not found in Appendix B.

5. When an insight was recorded under Schvq or another variable because it was considered
significant, new, or particularly cogent, it was generally not repeated under subsequent
subPar for the sake of efficiency.

6. This section is intended only as a summary and not as a substitute for the unpublished subPar
characterizations and the hundreds of source documents underlying them.

7. The volume and complexity of the presentation in the unpublished event characterizations
would make full indexing a daunting task.
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Table 6.1. Means by which people die in a catastrophic flood
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Mode of Death Q=2 E|>|a)|A |«
1. Lethal blow when struck by or crushed between large/sharp
debris. NN H
2. Trapped underwater within a stationary structure. Water pressure
often seals doors. e * H
3. Pulled underwater by an undertow or sinking raft while riding a
mobilized house, vehicle, boat, roof, mattress, or other floating . o | o H
refuge.
4. Mobilized home drifts, then disintegrates through collisions, . H
exposing occupants.
5. Pinned underwater after drifting against a tree, pole, house, fence, . H
rock, etc.
6. Held underwater by swift and violent undercurrents. . H
7. Insufficient strength to swim across swift and violent currents . H
before tiring.
8. Buried in sediment carried by the flood. . o | o H
9. Overtaken by a wall of water while driving out of a canyon instead . H
of climbing the slope.
10. Water-born plagues in countries lacking modern water-treatment ololol ol ol H
facilities.
11. Lethal blow from a collapsing structure. o | e M
12. Lethal blow when driven violently into a pole or other obstacle. o | o M
13. Baby or young child swept out of adult’s arms while adult wading. M
14. Fall off a raft (usually a roof, vehicle, or mattress) and unable to
swim adequately. NN M
15. Motorists attempt to cross a flooded road/bridge and wash into . M
deeper water, where trapped.
16. Unexpected wall of water washes vehicle off a road or bridge. . M
17. Climb on top of a vehicle, only to be washed away as the water . M
rises.
18. After evacuating, return to the flood zone for a belonging and ol . Y
swept away.
19. Enter flood to try to rescue or warn family, friends, or strangers. . e | M
20. Firefighters or other evacuation officials caught by the flood. e | M
21. Delay evacuation to grab money, boots, pet, or other valuable. o | o . M
22. Struck by debris while clinging to a pole, causing injury and . L
knocking loose.
23. Wading through shallow flood and step into a submerged creek, .
culvert, etc.
24. Buried by a slope failure at/near the dam following drawdown. o | L
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Table 6.1. Continued

Buildings/
Damages
Locations

Other

* Relative Frequency

Destroyed
Floodplain

Major
Minor
Dry Land

Vehicle
Boat

Mode of Death

25. Undercutting causes roadway to collapse as vehicle passes
overtop.

26. Due to poor visibility (night, rain, fog, sharp curve), drive into a
washout.

27. Weight of train causes bridge to collapse during flood conditions. .

28. Vehicle is moved down a street in shallow water, then washed into
a deep, water-filled pit.

29. Come to watch flood, then surrounded and swept away. .

30. Trapped, lacerated, or strangled by flood-borne barbed wire,
power lines, etc.

31. Hypothermia. ool o | o .

32. Explosions caused by boilers, transformers, smelters, etc. o o e

33. Burned in fire caused by natural gas, broken power lines, lanterns,
etc.

34. Fall from a high window during evacuation. . .

35. Electrocution when live power lines break. ol o .

36. Swimmer pulled under by an unexpected undertow in a reservoir
following a flood.

37. A boat on a reservoir is capsized and pulled under at the mouth of .
a tributary.

38. Boaters are washed downstream at great velocity until they crash .
or capsize.

39. Heart attack or other fatal condition caused by fear and exertion
during the flood.

40. Lethal shock after the flood due to lost family, community, or
financial security.

41. The depression associated with losses or the guilt associated with
“undeserved” survival causes a loss in the will to live and death
within days, months, or years. This includes suicides, but also
marked changes in activity levels, rapid deterioration (especially
among elderly), and behavioral diseases like alcoholism, drug
addiction, and patterns of self-destruction.

°
—

omi N ol N onll I on i H ondl H on'l BN on N R onll BN on i Nl B o

o

* Relative Frequency is coded as follows: L = low (would expect only in an atypical or extreme event), M = medium
(common, but probably not a dominant mode if many died), H = high (one of the dominant modes if many died).
These are subjective categories based on historical accounts of fatalities.
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Table 6.2. Means by which people survive when faced with a catastrophic flood
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Mode of Survival

1. Run up nearby hillside, keeping dry or splashing through early flooding. o/o|/o|e| e | e H
2. Run upstairs to a second or third story. AR H
3. Stand on a couch, counter, piano, refrigerator, table, dresser, or cupboard. o| o H
4. Climb a tree before or after being swept downstream. . H
5. Washed into calm or shallow water, where can climb onto shore. ° H
6. Grab an overhanging tree branch near shore and pull self to safety. . H
7. Ride a floating house until it lodges against the ground or another . H

structure.
8. Drive laterally out of the flood zone. o H
9. Outpace an advancing flood, driving down a narrow canyon. . H
10. Wash out into the relatively calm waters of a lake or reservoir and then

swim to shore. °e e H
11. Climb onto roof (via upstairs window or by poking hole through from . M

below).
12. Swim to a roof or drift there on a mattress, log, board, or propane tank. o| o . M
13. Float indoors on a mattress or buoyant furniture, or stabilize someone less

capable on such a raft. ° M
14. Cling to a telephone pole, lamppost, fence, etc. in water 6-ft deep or less. . M
15. Baby or small child thrown to someone on shore by wader who can’t . M

move.
16. Ride a floating house, roof, or other raft until it piles up in a debris dam

behind a bridge, then walk across roofs and debris to dry land. °l° M
17. Rescued by a helicopter while on a roof, second story, tree, car top, or

island. * °l° M
18. Rescued by boat. e[ o|o| o M
19. Pulled/carried to safety by a human chain, rope, or larger/stronger person. o|o|o| o M
20. Pulled inside a second-story window after drifting near there. . L
21. Baby or child passed or thrown out a window to someone in a safer

location. oo L
22. Dug out of mud after wave passes, with help of dogs and rescue crews. . L

* Relative Frequency is coded as follows: L = low (would expect only in an atypical or extreme event), M = medium
(common, but probably not a dominant mode if many survived), H = high (one of the dominant modes if many
survived). These are subjective categories based on historical accounts of survivors.
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When indexed to indicate a useful example, the citations take the form (#.#). The first
number indicates the number of the event and the second number indicates the number of the
subPar associated with that event. If only the first number is given, it refers to a pattern found in
more than one subPar during that event, or to notes recorded in an introductory summary to the
event as a whole. If an event rather than a number is indicated (i.e., South Fork Dam, Johnstown,
1889), it simply means that the applicable event was reviewed in detail, but was not formally
characterized with a written record.

Each index number refers to a specific subPar named in Appendices B and C. Appendix
C provides a summary table of the values assigned to every characterizing variable for every
event formally characterized. Appendix B provides an alphabetical list of those events. A
common numeric code (#.#) accompanies the subPar names in both appendices for easy cross-
referencing. The remainder of Appendix B provides examples, excerpts, and bibliographic
information from the formal characterization of each subPar, focusing primarily on insights
recorded under the category “Striking Characteristics and Valuable Quotations (Schvq).”

Given that a life-threatening event has occurred, pieces to the life-loss puzzle can
generally be stored in one of the puzzle boxes presented in the first column of Table 6.3. The
second column in Table 6.3 indicates important questions or descriptions pertaining to these
topical puzzle boxes, and the third column indicates the variables from Chapter V that are most
relevant to each box. Chapter VI opens each puzzle box in turn, lays the puzzle pieces out in
detail, and attempts to fit most of the pieces together using qualitative and historically based
observations. Because one of the goals for this chapter is to help researchers understand which
variables play the most crucial roles and how these variables interact in complex ways, each
section heading includes relevant variables in parentheses from column three of Table 6.3.

Type of failure (Fm, M. Dt, Ty. Ts)

Flash Floods

Modern radar, combined with flood-prediction algorithms, are still imperfect in
consistently predicting major flash flood events before they occur, although significant
improvements have been made. Human operators are also prone to error or misjudgment. In
some cases, there is a reluctance to issue a warning because the computers frequently detect false
anomalies (1.1).

159



Table 6.3. Issues influencing the rate of life loss

Category Description or Governing Question(s) Variables

1. Typeof a) Breach = hydrologic, seismic, or internal Fm, M, Dt, Ty, Ts
Failure b) Uncontrolled Release = mechanical or human error

¢) Drawdown = upstream slope failure
d) Displacement = landslide displacing the reservoir

2. Detectability Do people detect the likelihood of a failure? Det, Dt

3. Warning How much time does each person have to evacuate after Wt, Sc, O, We, Td,
Times and becoming aware of the danger, and how mobilizing is the Wt,y,, Pt, Ft, Flt
Effectiveness message?

4. Evacuation What proportion of people can clear the flood zone before | Ef, Pr, Td, Tw, Ts,
Rates they are endangered or trapped? Mi, Pt, Dev, Ret

5. Excess Evac. How much extra time do people have to evacuate before E, Ef
Times they are endangered or trapped?

6. SubPar Type Where are people located? What is significant about each | Pt, Ft
and location and people’s associated behavior?

Evacuation
Modes

7. Homogeneity Have the subPar been defined in such a way categories 5 — | Par;, Pt, Gf, Ls, Fp,
of SubPar 10 apply homogeneously to each? Fs, Schvq

8. Flood What are the hydraulic characteristics of the flood among Flt, V, D, Qp, Qb,
Dynamics Tpar;? W, Dv, R, Ww; Dt;

H, Hp, B, Vol, Rf, A

9. Loss of Shelter | What are the structural damages and to what extent do Bt, Ls, Dd, Sh, Psh,

these expose Tpar; to the flood dynamics? Fp, Fd, Fs, Fpar, Pt

10. Safe Havens, Safe Havens: How accessible are refuges in which Tpar; Sh, Ch, Psh, Ah,
Chance can seek protection? Coh, Pt, Bt, R, Ww,
Havens, Chance Havens: How likely is it that debris and obstacles Digeats Viocal, SC,
Pseudo-Safe will save lives rather than cause deaths? Wtae, E, Schvq
Havens, and Pseudo-Safe Havens: If buildings float, are they likely to
Aerated stay intact or be destroyed?

Havens Aerated Havens: When a building has major damage, do
accessible pockets remain that are more dangerous than
safe havens, but that nonetheless facilitate survival?

11. Flood Zones Is there time to reach a safe zone? If so, what is the Sz, Cz, Pcz, Coz,
and Zone distribution of Tpar; among flood zones that have unique Szd, Czd, Pczd,
Density historic distributions of life loss? Cozd

12. Lethality Rate | When not protected, how many people can float to safety Ptpar;, Ls, Pt, Ft; L;,
Outside Safe on debris, wash to shore, walk across a debris dam, or P;, Tpar;; Ln, Lnf,
Havens otherwise escape the flood? Li,, Liys

13. Lethality Rate | Can this be equated with the lethality rate on land, where Ls, Pt, Ptpar; Sh,
in Safe Havens | damages are minor, or to some other function? Psh

14. Lethality Rate | This would include stress-related deaths of evacuees and Ft, Schvq
on Dry Land the relatives of victims.

15. Life-Saving How many members of Tpar; can be rescued? How does Rr, Sh, Psh, Ch,
Interventions this affect the rate of life loss? Ptpar;

16. Complications | Are there unique circumstances that increase or decrease M], Ac, Td, Ts
or Aberrations | the life loss in this particular event?
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Table 6.3. Continued

Category Description or Governing Question(s) Variables
17. Post-flood Does the loss of friends, family, jobs, financial attainment, | Schvq
psychological | or emotional peace of mind hinder the ability of people to
trauma live life in a healthy manner or cause premature death?
18. Applicability of Historic Events to Future Events: Logic Behind a Proposed Model

In many areas, flash floods and hydrologic failures due to intense thunderstorms are
much more likely during the summer. This is also when tourists are most likely to be present—
especially outdoor recreationists in or near streams.

Sabotage

Sabotage has not been common outside of wartime, but it has occurred often enough to
be an important source of failure. Dams breached through sabotage or war-time bombing include
the following: Eastover Mining Company Sludge Pond, Kentucky, 1981 (20); Mohne Dam,
Germany, 1943 (killed 1,200); Eder Dam, Germany, 1943; and the Dnjeprostroj Dam, Soviet
Union, 1941 (U.S. Bureau of Reclamation, 1983). Unsuccessful attempts at bombing or sabotage
include the Peruca Dam in Croatia, blasted by retreating Serbian forces, 1993 (Engineering News
Record, 1993); and the Ordunte dam during the Spanish Civil War. German forces visited the
Aswan dam with the intention of studying how to destroy it, but this was never accomplished
(Gruner, 1963). The most destructive intentional breach occurred in 1938 when Chiang Kaishek
tried to stop the Japanese army that was invading China. He dynamited a hole in the southern
levee of the Hwang-Ho River. The effect on the Japanese is not reported, but the flood destroyed
thousands of villages, half a million Chinese peasants drowned, and several million more died
through famine following the destruction of agriculture (Kovach, 1995).

Earthquake

Historically, there have been virtually no lives lost due to a dam failure caused by an
earthquake. Interestingly, failure by sabotage is usually ignored in dam safety risk assessments
(although it is sometimes included in a relative vulnerability assessment, it is impossible to
estimate the likelihood of initiation of sabotage) and failure by an earthquake is often considered
one of the greatest hazards, especially if a sudden failure mode is plausible.

Importance of Type of Failure

The nature of a dam failure is irrelevant to life loss, except as it influences the nature of
the resulting wave, season, and the warning characteristics. There are two exceptions to this:
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1. When people are killed by the failure of the slope itself (11). A dam can threaten
workers following a sudden drawdown if the drawdown results in a failure of the
embankment while workers are present (11.1).

2. When the loading is also local. Examples include an earthquake that blocks
evacuation routes and traps people in buildings; and a severe storm that blocks
evacuation routes (South Fork Dam, Johnstown) or hinders the awareness of sensory
clues (29).

Detectability (Det, Dt)

Several insights are worth noting: In many cases, the Par near a dam has been aware that
the dam was unsafe (17). When a safety concern has been detected, there has generally been a
reluctance to issue a warning until failure is viewed as highly likely or inevitable. Based on
modern improvements in dam engineering, monitoring, and safety awareness, many clues that
were not properly interpreted in the past would be recognized as serious safety concerns if they
manifested today, but still reluctance by public officials and owners might result in delays.

Warning Times and Effectiveness
(Wt, Sc, O, We, Td, Wt,,., Pt, Ft. Flt)

As the number of variables listed in the heading indicates, there are a large number of
possible perspectives one can take regarding the timing and effectiveness of warnings. It is
useful to examine historical insights for a number of these in detail.

Warning Time
The following insights are worth noting:

1. The initial warning time (Wt), whether restricted to official sources or defined to
include any human source, says nothing about the percentage of people warned, the urgency or
effectiveness of the warning, the rate of warning propagation, the average time available for
evacuation, or the time needed to evacuate. As such, it is informative regarding the response rate
of officials, but it provides little information regarding the reduction of Par; to the threatened
population (Tpar;). As an extreme example, Wt for the Bangladesh storm surge of 1970 was 3
days, but 225,000 people died because dissemination of the warning was limited and even
willfully blocked by officials (Smith and Handmer, 1986).

2. Researchers have defined Wt such that it must come from a human, and in some
cases that human must be a public official or a member of the media. As such, the average
warning time from any source (Wt,y,) is generally longer than Wt when no official warning is
given. Under such circumstances, Wt,,, will generally equal the average warning provided by
sensory clues (Sc).
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3. Before the magnitude of an approaching flood is clearly understood, officials can be
reluctant to broadcast a warning over mass media for fear that it will clog the streets with
curiosity seekers (16.1).

4. The possibility of communication bottlenecks should not be underestimated. For
example, in one case the National Weather Service (NWS) had an unlisted phone number and
routinely left its National Air Raid loud speaker turned off (16.1).

Warning Effectiveness

The following insights regarding warning effectiveness (We) are worth noting:

1.  When warnings precede a failure and thus reflect only the possibility or likelihood of
a flood of unknown magnitude, large segments of the population may postpone evacuation to
“wait and see,” or may go to extreme lengths to avoid evacuation altogether (35.5).

2. A history of false alarms can hinder the credibility of evacuation warnings,
especially if the warnings are begun prior to failure (17).

3. Those who have prior experience with extreme flooding, other natural disasters like
tornadoes, or who have participated in evacuation drills, are more likely to evacuate promptly
and via a safe route (15.1)

4.  When the magnitude of an approaching flood is greater than officials or residents
expect, it can be difficult to get people to believe the seriousness of the danger and to evacuate.
This is especially true when the most severe events in memory caused only nuisance flooding or
when a flash flood is preceded by mild local weather (15.1, 16.1).

5. The likelihood that people will evacuate increases with the number of warnings they
receive and the number of different sources from which they receive them (15.1).

6. Even though a county or dam owner has an emergency action plan, few may be
familiar with it, fewer still may be able to relate it to the real-life dynamics of a catastrophic
flood, officials may be ill-prepared to actually put it into practice in a timely manner, and the
names and telephone numbers of key contacts may not have been kept up-to-date. In some cases,
a plan may depend on a single person or a small set of persons who are unavailable or incapable
of responding at the time of the disaster (16.1, 34.1).

7. Those most difficult to warn are usually motorists and outdoor recreationists.

8. Historically, NWS flash flood warnings appear to have had a limited ability to
mobilize evacuations when presented as a crawl across the bottom of the TV screen or a brief
auditory message. There are several reasons:

a) Warnings often lack urgency or cover a sufficiently broad area that listeners
figure it pertains to other locations.

b) Readers of a crawl figure if a serious danger was imminent, it would not be
presented as a crawl.

¢) Recipients figure that if a true emergency existed, warnings would be confirmed
by other sources.

d) Not everyone is watching TV or listening to the radio.
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Sensory Clues

All of the following sensory clues have alerted people to danger:
1. A loud roar, resembling an amplified version of thunder, ocean waves, an
earthquake, or a crashing airplane.

2. The sight of an approaching wall of water, which can often resemble fire, smoke, or
fog from a distance because of the way light reflects off the spray that rises. This is usually
covered in front and above by debris, including houses, logs, trees, and a thick mat of earth. In
some cases, the debris is so dense that it completely hides the water from view.

3. The sound of cracking trees and telephone poles.
4. The sound of logs, trees, and boulders bouncing off the canyon walls.

5. The sound of houses exploding into a shower of boards as they are ripped from their
foundations and smashed one against another.

6. The sound of a creek growing louder and louder when a flood rises slowly.
7. The sight and sound of exploding power stations or transformers.

8. The buzz of electricity from snapping power lines.

9. Power lines swinging violently from upstream disturbances.

10. Railroad tracks snaking violently.

11. An advance, fast-rising flood, filled with debris, that precedes a wall of water by 2 —
30 minutes. The first warning might be shallow flooding in the house.

12. The sight of neighbors moving vehicles to high ground or congregating on the
hillside.

13. The obscure warning of motorists racing by while honking their horns.
14. Pets becoming agitated.
15. Power outages.

16. Dead phone lines.

The following conditions can mask sensory clues:

1. Heavy rain and hail tend to drive people indoors and mask both visual and auditory
clues (22, 29).

2. A strong wind.

3. No wall of water, but a fast-rising flood at night that rises with little sound (18).

4. The darkness of night can hinder visual clues and obscure auditory clues, but floods
are often loud enough to wake people at night. Nevertheless, even when there is a loud wall of

water, a fast-rising leading wave can surround a home before the greater wave is perceived
(16.2).
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Average Warning Time

Individual warnings (Wt;) provide a basis for an average warning time (Wtag). These
individual warnings can arrive by any of the following modes:
a. sensory clues,

b. telephone calls from neighbors or authorities before a flood nears the area (i.e.,
before the phone lines go dead),

passing motorists honking their horns and shouting warnings out the window,

a o

shouts from fleeing neighbors,

family or friends who stop by on foot or in an automobile,
the radio,

the TV,

CB radios,

1. fire fighters or police officers who drive through neighborhoods with bullhorns or
who go door to door, and

= @ oo

j. aself-appointed Paul Revere who races from door-to-door or business to business
delivering a quick warning with the intention that it be passed along.

The following insights and subtleties regarding the average warning time (Wtay¢) should
be noted:

1. Inalong, narrow river valley, when a wall of water progresses slower than people
can drive, there will typically be motorists or residents who detect the flood through sensory
clues and who flee downstream in an automobile. If they can gain distance, these motorists may
stop along the way to warn residents or to pick up family and friends. At the least, they will
typically turn on their lights, honk their horns, and possibly shout quick warnings out their
windows. Such warnings do not always communicate the approaching danger effectively, but
they generally prompt a curiosity that alerts other residents to sensory clues or alternate forms of
warning. This allows many to run up a nearby hillside or to evacuate by automobile. Such
actions generate a chain reaction, as more vehicles evacuate, people warn their neighbors, or
people notice the swarm of unusual activity outside their windows. This contagious process can
mobilize the better part of a community, saving countless lives, even in the absence of warnings
by public officials. However, it is by nature much more random than a formal evacuation plan
implemented by trained public officials. As such, when many houses are rapidly destroyed, the
chances that at least some people will remain ignorant of the approaching danger and fall victim
to the flood remains high (30). The Buffalo Creek dam failure provides an excellent example of
this process as it worked itself out over 15 miles (see Wt, Wt,y,, and Sc in the unpublished
working documents for event 17).
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2. Wired telephone service is quickly lost in virtually every catastrophic flood and so
should not be counted on to propagate a warning at the last minute.

3. Power is quickly lost or intentionally turned off in virtually every catastrophic flood,
eliminating the usefulness of most last-minute radio or TV broadcasts.

4. No cases provided information on the use of wireless telephones in disseminating a
warning, but during disasters wireless exchanges can quickly become overloaded, blocking
communication traffic.

5. Although the average warning time (Wt,ye) characterizes individual warning times
(Wt)) more closely than does the warning time based on the first official warning (Wt), Wtaye
does not characterize those with the shortest Wt;. As such, Wt,,, may appear large even though a
significant percentage of the subPar receives little or no warning. This is especially true when
Par type are mixed: i.e., a river reach that includes residents watching the evening news and
those who are sleeping in isolated campsites (16.2).

6. Wtay,, like Wt and the average warning time provided by sensory clues (Sc), lasts
only until the flood reaches a level of potential lethality. This is defined conservatively such that
only trivial flooding is permitted. Once a house is surrounded by water or people in the
floodplain have to wade, the stopwatch on warning time is read. Evacuation after this point is
defined as reaching a safe haven.

Evacuation Rates (Ef, Pr, Td,
Tw, Ts, Ml, Pt, Dev. Ret)

The following list provides important historical observations and insights regarding
evacuation rates:

1. When the inundated area is not more than about 1,000 ft wide, most houses have a
back door within 300 ft of safety. If the danger is clearly understood, it generally takes 0.5 — 3
minutes for a family to evacuate during the day, and 1 — 6 minutes at night, depending on how
many people must be gathered, how quickly they expect the flood to arrive, how extreme the
weather is outside, and whether or not they linger, get dressed, grab possessions, or warn
neighbors. These ranges must be extended slightly when the danger does not immediately
register (6.1). Average values (the representative evacuation time, Ret) are on the order of 1 —2
minutes during the day and 2 — 4 minutes at night. During the day, a large wall of water can
provide an average warning time (Wtag) of 1 —4 minutes based on sensory clues, which explains
why some very destructive floods have killed a small percentage of Par when Wt = 0 minutes
(30).

2. Frequently, healthy individuals slow their evacuation to help others—neighbors,
strangers, aged parents, a disabled relative, babies, children. In some cases, they all perish
together (6.1).

3. It is not uncommon for people to delay or turn back to grab a pocket book, pair of
boots, coat, clean clothes for a child, or some other valuable of minor importance. Sometimes
people will return after reaching high ground. They can also delay to grab a pet or to release pigs
or horses (17, 18, 18.25, 29). Many people have died due to such delays.
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4. Strong rains, bitter cold, and other extreme weather conditions can slow an
evacuation, but people will quickly run outside if they expect a towering wall of water to crash
into their house at any moment.

5. Spouses who work outside the flood zone may run or drive into the flood zone to try
to reach their families before the flood arrives, even if there is insufficient time to reach home or
to evacuate once there. This increases the representative evacuation time (Ret) and can greatly
increase life loss (29).

6. When workers are concentrated in a factory, warnings can often be propagated within
seconds or minutes with a high degree of credibility and urgency (29).

7. Fences can prove formidable barriers to evacuation on foot, slowing escape or
preventing it altogether. In some cases, elderly adults have thrown children over fences while
they were forced to face the flood (6.1).

8. There is a small percentage of people who refuse to evacuate, even in the face of
clear, urgent, door-to-door warnings (8.1, 18.3a).

9. Evacuation warnings are generally less effective prior to dam failure since the
magnitude of the flood is not known and it is uncertain when or if a flood wave will actually
appear. Hence, the evacuation rate prior to failure can be much slower than after failure (17,
23.1, 35).

10. Sometimes people believe a dam might fail, or even has failed, but believe the flood
will do no more than nuisance flooding at their home. Under such misapprehensions, even the
sensory clues of a leading, fast-rising, debris-filled flood may not produce a rapid evacuation
(15, 17.12, 22, 29.9).

11. Evacuation rates will vary with the expected travel time of the flood. That is, people
who can evacuate in seconds or minutes may take much longer if they think they have half an
hour or an hour.

12. The last four points limit the effectiveness of many evacuations, causing the trend line
of the evacuation nonsuccess factor versus the excess warning time Ef= Tpar/Par vs. E = Wt,, -
Ret) to approach an asymptotic value slightly above zero as E increases (see Figure 7.1 for an
historic example).

13. Most people who evacuate on foot in narrow valleys choose a reasonably direct route
toward safety, moving laterally toward the nearby hillside.

14. When evacuees panic, they can freeze in their tracks, jump out of upper story
windows, or overlook the closest hillside and run parallel to the river, sometimes toward the
flood (17, 18, 26.2, 29).

Some panicked individuals have run toward the river to cross a bridge to run up the hillside on
the opposite side. While cases of panic are uncommon, they can infect an entire group, resulting
in great, unnecessary life loss (29).
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Excess Evacuation Times (E, Ef)

Because the representative evacuation time (Ret) is based on escaping the flood zone, and
since individual warning times (Wt;) underlying the average warning time (Wt,y,) stop increasing
once 6 — 12 inches of water crosses the floodplain, the excess evacuation time (E = Wt,,, - Ret)
says something about the likely size of the threatened population (Tpar;) but it says nothing about
the ability of people to reach safe havens (18). Likewise, E says little about the ability of people
to wade to safety or escape with the help of rescuers during the early stages of flooding (18.21).

When E is small or negative, safe havens provide the best alternative to evacuation. For
example, when people dwell on an island that is submerged by a flood, there may be patches of
relatively high ground that allow people to safely stand in shallow water (a safe haven) while
their houses are washed away. The same can hold true for any location cut off from the edge of
the flood by bridges, barriers, or distance. In such cases, because people may seek shelter outside
of buildings on higher ground, high loss of shelter does not reflect the nature of the flood
experienced by the residents. Expecting the proportion of the threatened population to perish
(Ptpar;) to approach 1.0, one might be surprised to find the life loss approaching zero (18.21).

E is the only measure of time that describes the likelihood that people will successfully
evacuate. The initial or official warning time (Wt), the average warning time from any source
(Wtaye), and the average warning time provided by sensory clues (Sc) say something about the
time available for evacuation; and the representative evacuation time (Ret) describes the time
needed to evacuate; but only E = Wt,,, - Ret describes the difference between the two. In the
same way, Sc and Wt,,, indicate whether people are likely to reach a safe haven only when these
values are compared to the time required to get there.

SubPar Type and Evacuation

Modes (Pt, Ft)

The rate of life loss varies significantly among Par type (Pt) since it is a function of
where people are located when the flood reaches lethal proportions. Apart from where people are
located when they learn about a failure, the excess evacuation time (E), people’s modes of
evacuation, and the local loss of shelter (Ls) influence where people are located at the flood’s
peak. Issues affecting lethality are presented or expanded upon toward the end of this chapter.
The subsections below present insights specific to each Par type.

Residential vs. Commercial vs. Seasonal

Each of these words defines a type of community with unique temporal characteristics.

Residential neighborhoods. During school, work, and commuting hours, the population in
residential areas should not be based on the average occupancy, since a large percentage of both
adults and children will not be home. The same holds true during camping holidays, weekends in
the summer when people are likely to be away from home, and popular shopping times.
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Commercial districts. Depending on the nature of the local businesses, commercial
districts can be largely vacant outside of work hours and especially at night, on Sundays, and on
holidays.

Seasonal areas. In some cases, a subPar will consist almost exclusively of tourists or
recreationists. Examples by region include campgrounds (3), areas frequented by fishermen (2),
and resort communities (32). In such cases, the subPar will fluctuate in size based on the season
and whether it is a weekend or holiday, so the likelihood of a dam failure should also be
estimated on a seasonal basis.

Buildings

Those who are caught while running from a building toward the hillside benefit from
being among buildings only if the buildings shield them or provide a chance haven as they are
washed downstream.

Automobiles

The likelihood of people being in a vehicle rather than at home or at work is much higher
during regular commuting hours and much lower at night.

People often choose to evacuate by vehicle when it is safer, shorter, and quicker to run up
the hillside. There are several reasons for this:

A vehicle may have great monetary value, so there is a desire to remove the vehicle from the
flood zone. This is apparent when people risk their lives to drive a vehicle a short distance up a
hillside (17.14) or when they refuse to abandon a stalled vehicle while it is still safe to wade (1).

1. A vehicle is associated with speed, which is desirable during an evacuation.

2. A vehicle provides a means by which a family can reach food and shelter once their
house is flooded.

Many people are conditioned by habit to drive rather than to walk or run.

4. A vehicle helps transport those with limited mobility.

Additional historical insights pertaining to motorists and their passengers are enumerated
below:

1. Motorists who become stalled in water are usually reluctant to leave their vehicles.
While flooding is minor or moderate, they may decide to climb on top of the vehicle or remain
inside while it drifts. Thus, slow-rising floods that provide ample time for evacuation can prove
lethal: the window for evacuation is lost and the flood continues to rise or a sudden wall of water
sweeps through (1.1, 25.2).
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2. Water through which people can wade is often capable of washing a vehicle
downstream (9.3, 23.1). As sediment coats a road surface and the weight of a vehicle is reduced
through buoyancy, friction between the tires and the road is reduced considerably.

3. Many automotive fatalities are a result of motorists choosing to cross a flooded bridge
or roadway, either because the flood appears shallow or because the motorist does not realize
what a small depth/velocity combination is needed to move an automobile into deeper/swifter
water (8). In the common scenario where a motorist hesitates and then chooses to venture across
a flooded roadway, the resulting subPar is a form of convergence. In such cases, variables like
the warning time (Wt), the average warning time (Wt,,,), and the excess evacuation time (E)
have little or no relevance (23.1).

One does not see a steady stream of vehicles swept away at the same river crossing
because after the first vehicle begins to float, other drivers stay clear. However, the same
crossing can sweep more than one car away if it is isolated and the first automobile disappears
from view before a later motorist arrives (8.3).

1. Variables like the destructive velocity (Dv) and the peak flow rate (Qp) only apply at
bridges after a vehicle is swept into the channel, since most of the water passes beneath
the bridge.

2. A unique danger exists to motorists who might plunge dozens of feet when a section
of roadway that has washed away is hidden by darkness, rain, fog, or a blind corner
(27.1).

3. Excavations, ditches, canals, and other topographic depressions can turn an otherwise
shallow flood into a death trap by slowly washing motorists into a place from which they
cannot escape (9.3).

Campgrounds

The size of subPar in campgrounds varies dramatically with the season, generally
swelling in the summer and peaking on summer holidays and weekends, so the comments under
seasonal subPar apply here. Campgrounds are somewhat unique in that official warnings are
especially difficult to deliver to outdoor recreationists and recreationists may have fewer
opportunities to find shelter than those in other surroundings may. See the section on the lethality
rate outside of safe havens.

In the River (waders and swimmers)

Few people wade or swim more than an hour after dark, so this type of subPar can be
ignored at such times.

See the section on the lethality rate outside of safe havens.
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Along Shore (hikers and the curious)

Few people hike or watch floods more than an hour after dark, so this type of subPar can
be ignored at such times.

See the section on the lethality rate outside of safe havens.

Boats

When on a river, boaters face increased risks due to the difficulty of delivering an official
warning and the increased evacuation time most boaters would require. See the section on the
lethality rate outside of safe havens.

Trains

Depending on the depth of flooding and whether or not a train is moving, a train is most
similar to either a mobile home (as was the case near Johnstown when South Fork Dam failed in
1889) or an automobile, though in both cases less buoyant. The impact of a crash can cause
deaths even when people stay dry (19).

Homogeneity of SubPar (Par;, Pt,
(Gf. Ls, Fp. Fs, Schvq)

Descriptive variables are generally point estimates [i.e., maximum depth (D), maximum
velocity (V), destructive velocity (Dv), and initial warning time (Wt)] or descriptive variables are
based on a representative average across a subPar [i.e., sensory clues (Sc), average warning time
(Wtaye), and excess evacuation time (E)]. The more homogeneously each subPar is defined [i.e,
with respect to Par type (Pt), loss of shelter (Ls), location, warning times, etc.], the more closely
a point estimate or average value can characterize every member of Par. That is, homogeneous
subPar reduce the variance if characterizing variables were applied to each individual.

Although each flood is highly unique, it is possible to compare statistically dissimilar Par
using statistically similar subPar when those subPar are defined homogeneously and one focuses
on the threatened population (Tpar;) to reduce temporal variations. These two steps—reducing
Par to homogeneous subPar and Par; to Tpari—allows one to characterize the hazard to a
population primarily by variables like loss of shelter (Ls), maximum depth (D), and maximum
velocity (V).

Flood Dynamics (Flt, V. D, Op, Ob, W.
Dv. R, Ww: Dt: H. Hp. B, Vol. Rf, A)
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It is possible to make a large number of generalizations regarding the dynamics of

extreme floods. The following list enumerates those aspects of flood dynamics that are most

important:

1.

Catastrophic floods are violently turbulent. They often strip the clothing off both
those who perish and those who survive. Victims can be so mangled and caked with
mud that friends and relatives do not recognize them. Sometimes bodies are
dismembered or so disfigured that it is impossible to tell the victim’s sex (32.1). The
main current generally makes normal swimming difficult or impossible. Many people
die because the current pulls them under or prevents them from reaching the surface.
If a person is driven into an object such as a house, tree, rock, fence, or telephone
pole, the current has sufficient force to pin the person underwater and even bury them
in sediment.

In open currents, people who die usually do so because they are held underwater, tire
trying to fight turbulence, or are injured through a violent collision with stationary or
mobilized objects—all functions of high velocities.

The peak flow rate of a dam break flood wave typically follows the leading edge by at
least a minute, and floods often rise in progressive surges or waves. It follows that
fatal depths are often less than the peak depths and the depths encountered while
people seek out safe havens, including wading to shore, are usually much less than
the peak depths. It also means that those farther from the river may have precious
extra seconds to evacuate compared to those closer to the river (22.2).

Depth is principally important as it works with velocities to provide the needed
moment and momentum to topple people and buildings, to allow high velocities and
turbulence to develop, and to trap people underwater by crashing down from above.
Thus, if people are able to swim, the velocity of a flood is more important to life loss
than its depth; velocity is the killer and the depth is the accomplice (18.13). As an
example, over 50% of the campers died when 3 ft of water raced across the Aras
alluvial fan (3), but all those who drifted free of currents in the depths of Lake
Mohave were amazed at how easy it was to swim to shore (22.4, Eldorado Canyon).
In the same way, it is likely that over half of the town of Rivadelago survived the total
destruction of their homes, without warning, at night, because the Vega de Tera flood
was immediately dissipated in the deep, quiescent waters of the lake just downstream
(36).

The ratio of serious injuries to deaths varies greatly by event, making generalizations
difficult. In some events, people either die or escape relatively unharmed (22). In
other events, the number of people admitted to emergency rooms might be several
times greater than the number of deaths (17). As a rule, if a flood is extremely lethal,
destroying all safe havens, there are few injuries because people either evacuate or die
(39).

Extreme scour and deposition—on the order of a few feet to over 10 ft—is common
in extreme floods. In some cases, the river channel may permanently shift to flow
where buildings once stood (3, 15, 18.3a, 36).

In some cases, the flow forms vortexes that can drill deep holes into the ground
(18.3a, 12 ft deep).
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Catastrophic floods are characterized by an unusually large debris load: Earth from
the failed embankment and canyon walls, cobbles and boulders, forest litter, felled
trees, roofs and sharp boards from shattered houses, floating mobile homes, vehicles
of all shapes and sizes, barbed wire and boards from fences, telephone poles, propane
tanks, railroad cars, railroad ties, etc.

Consider the following examples:

a) The Eldorado Canyon Flash Flood picked up enough dirt and gravel from bare
canyon walls that its leading edge sprayed out gravel and appeared to have a viscosity
comparable to freshly mixed concrete (22.7).

1. The Stava embankments had sufficient volume in relation to the reservoirs that the
resulting flood contained approximately 50% sediment (32.1). Extremely high
sediment loads are common when tailings dams fail (17).

b) When the Bayless Pulp & Paper Company Dam failed, it picked up 700,000
cords of logs from the pulp mill, completely blanketing the floodwater to the point that
some observers high on the hillside could not see the water when the flood passed
through Austin, Texas (8).

¢) The Buffalo Creek flood was typical of a wall of water passing through
sequential communities. It was characterized by every conceivable item on the
floodplain, but it was dominated by automobiles, splintered boards, shattered houses, and
houses that were still intact, riding high above the flood and being pushed before it by a
wall of water that was black with mud from the embankment (17).

d) The Mill River Dam failure provided an example of a flood that passed through
forested valleys between communities. Consider the following quote from a young boy:

A great mass of brush, trees, and trash was rolling rapidly toward me. |
have tried many times to describe how this appeared; perhaps the best simile is
that of hay rolling over and over as a hayrake moves along the field, only this
roll seemed twenty feet high, and the spears of grass in the hayrake enlarged to
limbs and trunks of trees mixed with boards and timbers; at this time I saw no
water. (Sharpe, 1995, p. 97)

1. Ifthe flood is not slow rising and it passes through a canyon or narrow valley, debris

tends to concentrate at the leading edge of the flood, slowing the wave and causing it to pile up
as a wall behind a loose, mobile debris dam.

2. A narrow constriction can also cause a surging wave to mount up into a wall of water

3. A wall of water will tend to ride a winding canyon like a bobsled, sloshing up one

side and then another. Often it is described like a snake riding the canyon walls (6.1, 17).
Superelevation differences of 10 — 20 ft have been observed, representing roughly 30% — 80% of
the flood’s peak depth (17, 22.2). When a tributary enters another river at a sharp angle, the flood
can wash far up the opposite shore before moving downstream (17, 35). The turbulent nature of
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these behaviors can send a finger of water out to snatch one house away from between two
others or leave houses untouched at an elevation below houses that are destroyed (17, 22).

4. Because a wave must generally be slowed to pile into a wall of water and debris,
such a wall will often sweep a fast-rising, debris-filled flood before it as the mobile wall leaks
and sections break away to travel at unhindered velocities. This can provide an important sensory
clue, giving residents precious seconds or minutes to run or wade to safety before the wall of
water arrives (17.6).

5. Debris dams tend to form behind bridges, reversing attenuation and causing the wave
to rise in height. If the bridge or dam fails catastrophically, the renewed wall of water will be
higher and the peak flow rate will be greater than if the temporary dam had not formed. As
debris dams form and fail, a flood wave can be slowed and renewed over and over as it moves
through many miles of canyon or narrow valley (17).

6. When a series of small dams dot a river (common when mills are plentiful and
factories depend on water power), the sequential dam failures increase the volume of the flood
and compensate for attenuation through valley storage.

7.  When a wave is renewed, valley storage forces the peak flow rate to follow an
exponential decay pattern, approaching a limiting value (16, 18, 26, 29, 31, 35). As the flow rate
decreases, average depths and/or velocities will also decrease. Since the peak flow rate (Qp) is a
function of the product of average depths and velocities, depths and velocities decay much more
slowly than Qp. Of course depths and velocities can increase at the expense of the other if the
average slope or cross-sectional area changes (26, 22.1).

8. Obstacles like train cars, buildings, and sturdy trees that support a debris dam can
divert a flood and protect regions behind them (17.7, 18.8, 29.1). When the terrain is reasonably
flat, a debris dam or building can also turn a flood and send it in an unexpected direction, such as
down a side street between a row of buildings.

9. Inarow of buildings or connected apartments roughly parallel to the direction of
flow, the leading units can buffer those downstream, resulting in progressively less damage
(18.5).

10. A row of buildings will buffer buildings inland (18.8).

11. Parameters like destructive velocity (Dv) and peak flow rate (Qp) characterize areas
near the channel far better than areas near the flood’s fringe (18.3b). Dv and Qp grossly
misrepresent a subPar when the subPar is located in a finger of the flood or a quiescent
backwater (16.6, 18.13).

12. As Par; grow in size, the maximum flood width (W) and hence the destructive
velocity, Dv = [the peak flow rate (Qp) — bankful flow rate (Qb)]/[maximum flood width],
become less representative.

13. When Par; is heterogeneous, point values like maximum depth (D) and maximum
velocity (V) generally approximate the flood conditions only in those areas near the original
channel, even if those areas are a small fraction of Par;.

14. Dam type (Dt), the height of the dam (H), the height of the reservoir pool at failure
(Hp), the breadth of the dam (B), the volume of the reservoir released (Vol), the rate of dam
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failure (Rf), and the cross-sectional area of the breach (A) are relevant to life loss only insofar as
they influence variables like the detectability of the ensuing failure (Det), the average warning
time (Wtay), the rise rate of the flood (R), the height of a wall of water (Ww), the maximum
velocity (V), the maximum depth (D) and the underlying probability that a structure will fail. As
such, they are at best surrogates in a life-loss equation and should largely be ignored. They do,
however, offer the possibility for checking or calibrating the accuracy of flood inundation
modeling.

15. When the excess evacuation time (E) is very small or negative, the rise rate (R) is a
critical factor that determines whether people are likely to be trapped or washed away. Slow-
rising floods do not generally pose a threat to people in their homes since occupants can readily
evacuate, but motorists reluctant to leave a parked or stalled vehicle can linger to the point that
evacuation becomes impossible (25). An extremely fast-rising flood that does not pile into a wall
can trap more people than a wall of water if the former provides fewer sensory clues (18).
However, once the flood has arrived, a wall of water is impossible to avoid, but a fast-rising
flood may provide the few seconds or minutes necessary to wade to shore before it prevents
wading.

16. Current definitions of forcefulness (F = Fp, Fd, Fs) mask the most important factor
differentiating rates of life loss by combining structures with major damage and total destruction
into a single category. When buildings are destroyed, most people remaining in those buildings
die, but when buildings have major damage, the fatality rate varies widely depending on the
frequency with which safe havens remain. On average, the historical fatality rate in buildings
with major damage has been closer to that observed in buildings with minor damage (the
proportion of the threatened population that perishes, Ptpar = 0) than to that in buildings that
have been destroyed (Ptpar = 0.8 — 1.0).

As an example of how forcefulness (F) masks this distinction, consider the contiguous
subPar 18.12a and 18.12b. Every building in 18.12a was destroyed and every building in 18.12b
had major damage, making proportional forcefulness (Fp) = dichotomous forcefulness (Fd) = 1.0
in both cases. The fatality rates diverged significantly, however, as expected, with the proportion
of the subpopulations at risk that perished being P13 12, = 1.0 and P5 12, = 0.013.

17. The following real-life behaviors of flood waves are difficult to model with current
software:

a) The effects of debris dams in creating and renewing the depths of a wall of
water (17).

b) The effects of debris dams in protecting areas from damage (29.5).
c) The effects of debris dams and buildings in changing the direction of flow.

d) The selective inundation of a crashing flood as it ricochets off alternating sides
of a canyon with superelevation differences exceeding 10 ft (17, 22).

e) The ability of a wave’s momentum to carry it out of the channel and along a
new course when it encounters a bend.

f) The ability of a wave to rocket out of a constriction like water from a fire hose
and miss adjacent areas that would be flooded if the flood had less momentum (6.1, 26).
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g) The reduction in velocity caused by mobile and stationary debris (17).

h) Differences in depth, velocity, and arrival time between a wall of water and its
leading fast-rising flood (17).

18. The force of the current makes it extremely difficult to regain one’s footing after
being swept off one’s feet. Consider the words of a rescue worker who fell while wading under a
safety rope: “I have a new respect for water. It was an incredible force. Words can’t describe it. .
.. Your foot leaves the ground and you’re gone.” (Kaiser, 1995, p. Al). Fortunately, his fellow
firefighters grabbed him before he drifted away.

19. The type of failure (Ft) is relevant only insofar as it affects aspects of warning and
the dynamics of the flood wave itself. For example, the Vaiont failure (35) was extremely
unique. The dam itself did not fail, but a large portion of the mountain slid into the reservoir and
sent a massive wave 325 ft over the top of the dam. Despite the source of the wave, a flood with
similar hydraulic characteristics might be expected half a mile below a tall, concrete gravity or
arch dam that suddenly burst (31), or below an earthen, rockfill, or mine-waste dam perched high
on a very steep slope (32).

20. Given identical volumes and no warning, an expansive flood is safer than a narrow
flood for two primary reasons. First, as a flood spreads laterally, three factors combine to greatly
reduce the flood’s local velocities: a) Depths decrease through volume spreading so that a wall of
water cannot be sustained. b) A wide floodplain implies a relatively flat downstream slope. As
momentum carries the flood laterally, the slope becomes even smaller. ¢) Buildings near the river
absorb the flood’s energy, buffering each successive row of buildings. Second, as velocities and
depths drop, loss of shelter shifts from high (H) to medium/major (M), and then to low (L). This
greatly increases the number of safe havens, chance havens, and the survival rate (18).

Loss of Shelter (Bt, Ls, Dd, Sh,
Psh, Fp, Fd, Fs, Fpar, Pt)

Loss of Shelter vs. Economic Damages

It is important to realize that loss of shelter (Ls) is not the same as economic damages.
Lives are lost within buildings when occupants fall into water in which they cannot swim;
become trapped underwater as a room fills to the ceiling; get struck by large, external debris
penetrating from outside; get struck or trapped underwater as the building breaks apart; or get
washed through a wall or out a door or window into open water. As such, the critical question is
not the degree of economic damages or whether a building should later be condemned, but
whether or not a structure maintains an accessible safe haven or pseudo-safe haven for the
duration of a flood.

It follows that loss of shelter is not synonymous with the definitions used by the
American Red Cross or other agencies to define housing damages. Instead:

1. Ls=L implies relatively safe havens on every floor.
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2. Ls =M implies complete loss of a safe haven on the first floor.

3. Since loss of a safe haven is generally accompanied by structural damage, traditional
categories of minor and major damage generally agree with Ls = L and Ls = M when they
exclude damage to furniture from water and mud.

4. Ls=H implies complete loss of all safe havens (including accessible rooftops) and
loss of every aerated pocket of protection. If an aerated pocket of protection remains, Ls = M
even if a building floats off its foundation or is later condemned.

An anchored house may be torn apart, so a house that is securely anchored to a chimney
or foundation can provide a more dangerous refuge than one that is free to float (17).

When a house floats off its foundation and is mobilized downstream, several things can
happen to it. It can sink or be sucked underwater by an undertow; waves can break it to pieces; it
can collide with a stationary object like a tree or the jutting end of a house and break apart; the
roof can sever off and form a raft; it can collide with another floating house or a debris dam and
explode in a shower of boards; it can jam in a debris dam and form part of a bridge to safety, or it
can drift a short distance and run aground.

It is useful to examine the three classifications of Loss of Shelter (Ls) individually.

Ls = H: total destruction

A house can be destroyed in many ways. It can:

1. be slowly battered to pieces by waves and debris,

2. be obliterated in an instant by a towering wall of water,

3. collapse on itself, especially if it is made of stone or brick,

4. pop up like a cork and float off its foundation, then disintegrate through collisions
downstream, or

5. float a while and then sink.

A building can be destroyed even if the water surface elevation is well below the

elevation of the top story (18.7, 29.2, 29.7). However, a house is destroyed only when all safe
havens, pseudo-safe havens, and aerated pockets of protection disappear during the flood. During

177



or after destruction, any of the structural members, especially a severed rooftop, can provide a
chance haven.

If a rooftop is inaccessible, a building is destroyed when the top floor or accessible attic
is completely submerged. If a roof is accessible, the building is considered destroyed only if the
flood or flood waves wash across the crest of the roof to an extent likely to wash people into the
flood. Since the momentum of the flood riding the slant of the roof will cause waves to run up,
this elevation is generally on the order of a foot or two below the roof’s crest (18.10).

Ls = M: major damage

If the highest accessible floor (including an accessible attic) is filled with water beyond 1
ft of the ceiling, but the flood does not crest an accessible roof, Ls = M rather than H because an
accessible safe haven remains (18.15).

People have survived by huddling in a back corner, sitting on a counter, or hiding in a
cupboard when two walls and most of the floor have been washed away (18). Hence, if walls are
torn off but portions of the structure remain to shelter occupants from the main current or to
provide something to which they might cling, the loss of shelter is major; but if only trivial
structural members remain such that all shelter is lost, the dwelling is destroyed.

A building is destroyed any time it is torn apart and submerged in the flood. However, if
a building floats off its foundation and maintains an accessible pseudo-safe haven for the
duration of the flood, Ls = M.

A building just inside the edge of the flood can experience major damage when a leading
wall of water or sudden surge tosses large debris such as logs or millstones through the walls.
These, in turn, can injure or kill those that are inside (6:1).

Ls = L: minor damage

Almost any room has a counter, desk, couch, table, chair, bookcase, bed, dresser, piano,
or other piece of furniture that can provide an elevated platform or a floatation device during a
flood. When a flood is relatively quiescent, with few exceptions, these objects and a little
swimming allow people to keep their heads above the water surface even when the flood nears
the ceiling. While elevated ceilings pose a special problem, a flood reaching such depths without
causing major damage is necessarily very calm, making it easier to cling to floating furniture,
tread water, or hang onto rafters. This has been demonstrated in commercial buildings with two-
story ceilings (18). Hence, Ls = L when there is minor structural damage and the flood does not
encroach within a foot of the first-floor ceiling or within 2 ft of the peak of a sloped ceiling.
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Safe havens, Chance Havens, Pseudo-safe
Havens, and Aerated Havens (Sh, Ch, Psh,
Ah, Coh, Pt, Bt, R, Ww, Diecal, Viocal

Sc, Wtave, E. Schvq)

Safe Havens

Havens that are safe for most people under most circumstances can be predicted based on
flood mapping, a survey of building heights, and estimates of which trees and buildings will
remain standing. Safe havens include the following:

1. An upper story with sufficiently shallow flooding that occupants are not washed out
a window and can float on a bed or stand freely. These conditions are generally maintained when
the flow does not rise more than one foot above the windowsills in the highest story (about 3 ft
above the floor) and the building is not destroyed (18.23, 18.24).

2. Quiescent flooding that does not trap people without air. When flooding is relatively
quiescent, people readily keep their heads above water by treading water, standing on stationary
platforms such as counters, floating on beds, or by clinging to floating furniture. If such flooding
does not persist to the point where it would lead to extreme hypothermia or exhaustion, a
relatively safe haven is maintained even when waters come within 1 ft of a flat ceiling or 2 ft of
the peak of a sloped ceiling, whether or not the ceiling is elevated. Although it would be highly
variable by context, the safe haven would be lost after the flood remained at such high elevations
for more than 0.25 — 2 hr, the general range in the historical record (18).

3. An attic that is accessible from within the house or trailer (26).

4. A stationary rooftop, if it is accessible from the house and waves do not wash over
the top (18).

5. A stout tree that is easy to climb, taller than the flood, and is not toppled.

6. Any island or region that experiences shallow flooding during the flood’s peak, such
that depths are easy to resist while standing or clinging to convenient anchors such as telephone
poles or lampposts (depths of 1 — 5 ft, depending on the velocity; 18.21, 18.25).

7. The hillside beyond the flood if a member of Tpar; can readily drive or wade to it
while the flood is still shallow, or if they can reach it directly from the roof or a window (18.2,
18.13, 18.21).

Chance Havens

If debris does not crush or fatally wound flood victims, it can provide a means of
floatation that has saved many lives. Debris is defined as a chance haven rather than a safe haven
because it cannot be readily predicted, its benefits are unreliable, and it can directly cause death
by wounding flood victims or trapping them underwater. Chance havens can contribute
significantly to the variance in fatality rates across similar events.
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Beyond floating debris, given the right circumstances, chance havens also include safe
havens, pseudo-safe havens, aerated havens, and areas of low velocity within swimming distance
of shore. Chance havens thus fall into four categories:

Rafts and floatation aids: Severed rooftops, mattresses, propane tanks, and logs are the most
commonly mentioned in stories about survivors (18.7).

The roofs of floating buildings: Because it is both more difficult and more dangerous to reach
and remain on a rooftop after a building begins to drift, lurch, spin, or sink, rooftops should be
treated as chance havens whenever a building drifts more than 100 yards. As indicated above, if
people must rely heavily on chance to reach a largely inaccessible roof, this would also constitute
a chance haven.

Stationary havens: Any immobile haven that is reached while drifting, including rooftops, upper-
story windows, treetops, overhanging branches, debris dams at bridges that allow victims to walk
to dry land, and the shore itself.

Aquatic havens: Any location where shore can be easily reached without fighting high velocities,
such as a lake or a quiescent backwater.

Pseudo-safe Havens

Pseudo-safe havens are safe havens on or in buildings that become reclassified once the
building begins to drift. They are a hybrid between safe havens, which are static and predictable,
and chance havens, which depend on the whims of the current and the debris load. They exist
only among a subset of buildings with major damage (see Loss of Shelter).

As indicated above, rooftops are considered chance havens (Ch) when a building drifts
more than the length of a football field. Predicting whether a floating structure will maintain a
pseudo-safe haven or be destroyed requires an estimate of its trajectory, the duration over which
it can float, and the likelihood of a high-velocity collision. While these apparently depend in part
on chance, some useful historic patterns generally hold true. Since pseudo-safe havens only
apply in the narrow range of depths and velocities between the lower-end of major damages and
the point where buildings are destroyed by the currents themselves, the following scenarios are
comprehensive:

1. Currents capable of destroying anchored houses have usually destroyed floating
houses or eliminated the safety of their havens. Very few people have survived by riding a house
more than a short distance.

2. Mobile homes tend to float in modest depths and velocities, but being single story, a
pseudo-safe haven is maintained inside only until water rises more than a foot above the
windowsills. In swift water or depths over 6 ft, this condition will generally not last long as the
water pressure bursts open windows and doors and waves and debris batter holes in the walls.

3. Houses and mobile homes near the edge of a flood that float only a foot or two off
the bottom tend to travel less than 300 ft before they run aground or stack up against other
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houses, trees, or barriers. In such cases, the safety of the haven is generally preserved and the
survival rate is comparable to that for stationary safe havens.

4. Those who have survived after riding a house or mobile home more than a few
hundred yards have usually scrambled onto the roof or lodged in a debris dam where they could
walk across the shattered roofs of former houses to dry land. In both cases, the pattern required
chance havens and should be treated as such.

5. Concrete, stone, and brick structures do not generally float, at least for long. The
same would hold true of most large, commercial buildings.

Rooftops as Havens

To reiterate and to clarify, rooftops fall into one of the following three categories,
depending on circumstances.

Safe havens. When accessible and dry, rooftops are safe havens. The important point is
not that safe havens in buildings are equally easy to reach, but that if some people can reach
them, they preserve a means of shelter that is likely to reduce life loss compared to situations in
which every building is obliterated. Means of access might include an internal or external fire
escape, a door to the roof, or a dormer window. During 19" century floods, there were many
examples of people using a bedpost or other sturdy object to poke a hole through a ceiling or
wall to reach shelter (18). Similar access to a roof might be possible through many attics today.
People have also been known to climb objects like drainpipes or trellises, or to intentionally use
the current to float them up to the roof while they cling to such objects. However, when rooftops
are generally inaccessible and people must rely on chance to reach them, they should be treated
as chance havens.

Chance havens. A rooftop is a chance haven any time a person washes there from
upstream, access depends largely on chance, the rooftop severs from the underlying building, or
the building drifts more than 300 ft downstream.

Pseudo-safe havens. A rooftop is a pseudo-safe haven if a person reaches the roof
through an access largely free of chance and the building floats off its foundation and travels less
than 300 ft without being overtopped.

Aerated Havens

An aerated haven can remain when part of a stationary building is torn away and the
flood does not rise more than a few feet above the floor or the highest counter (Ls = M). The
following types of events can reduce safe havens to aerated havens:

when another building floats past and tears of an ell or smashes a wall (29).
when a log or trees crashes through a wall (6.1).

when a house at the edge of a flood is cut in half by a wall of water (17, 35.1)
when a house is well-anchored and progressive waves break apart the walls most
upstream or closest to the channel (18).

=
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5. when a central chimney or other anchor supports an attached portion of the floor
(18).

Aerated havens are not safe havens for the following reasons: Their locations depend in
part on chance, making them more difficult to target in advance by building occupants. Great
strength, stamina, or good fortune may be required to overcome the pull of the current. Since
they are open to the current, people must cling to fixed objects like counters and doorframes
rather than floating furniture.

Aerated havens are more dependable than chance havens because building occupants are
likely to gravitate toward them before the building is torn apart. That is, acrated havens are most
likely to form where temporary safe havens appear safest—downstream or inland from the
battering currents and debris.

For those who occupy an aerated haven, survival would be more likely than if they were
trapped underwater or swept downstream, but less likely than if the safe haven had not been torn
apart.

Flood Zones and Zone Densities (Sz, Cz,
Pcz, Coz, Zd, Szd, Czd, Pczd, Cozd)

Flood Zones

Recalling that dry land is considered a safe haven or a chance haven after the flood
arrives, there are three types of havens in which members of Tpar; survive floods: safe havens,
compromised havens (pseudo-safe havens and aerated havens), and chance havens. People have
also been known to survive after being buried in mud (32.1), but such cases are rare and can
probably be neglected. When one includes the open current and depths in which successful
wading is highly dependent on chance, a flood can be divided into four zones for the purposes of
life-loss estimation: safe zones (Sz), chance zones (Cz), pseudo-chance zones (Pcz), and
compromised zones (Coz). Each of these is discussed below.

Safe zones include all safe havens. These provide a high degree of safety and a
consistently low rate of life loss that approaches or equals zero. The distribution of life loss
should closely approximate that for loss of shelter (Ls) = low (L).

Such locations should be relatively easy to predict based on flood mapping except in the
uncertain range where safe havens may become compromised havens. Fortunately, havens that
have been only mildly compromised have similar life-loss characteristics to safe havens (one is
still on the far left of a curve like Figure 6.1 shown later), so one need not be overly conservative
when making estimates. For example, if one is not sure whether a building will float or not, but it
is reasonably certain that it will at least maintain a pseudo-safe haven by quickly running
aground, it should be treated as a safe zone.
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Chance zones include the places where people are submerged or face the open flood, and
all chance havens that might be reached while drifting. This set includes places where loss of
shelter (Ls) = high (H), campgrounds, and the floodplain when it is not a safe haven. The
distribution of life loss should closely approximate that for Ls = H.

Like safe zones, chance zones should be relatively easy to predict, except in the narrow
range where buildings might be severely damaged or drift far down stream without being
destroyed. These are dealt with next.

Pseudo-chance zones fall in that narrow range of depths*velocities for which it is unclear
whether a building is likely to be destroyed, float far downstream, or maintain aerated havens.

One approach to estimating life loss in pseudo-chance zones would be to combine the
most relevant portions of the life-loss distributions for Ls = H and Ls = major (M). Thus, the
inherent uncertainty underlying the zone prediction is recognized by using a distribution that
incorporates that uncertainty into its formulation.

Compromised zones are that central portion of compromised havens that have not been
intentionally classified as safe zones or pseudo-chance zones. Thus, omitting the portions likely
to be classified elsewhere, the life-loss distribution should closely resemble the central 60% —
80% of the distribution for Ls = M.

Zone Densities

Zone density (Zd) represents the distribution of Tpar; among zones based on topographic,
structural, and hydraulic considerations as they interface with flood routing, the rise rate of the
flood, and the propensity of people to relocate to a safer zone if there is time to do so. The word
“density” refers to either the number of people or the fraction of Tpar; per zone based on access
rather than the relative concentration of zones in an area. Access includes the physical ability to
move to a location and sufficient time to get there.

While it is not possible to predict the exact pathway of an individual, history suggests that
most members of the threatened population (Tpar;) will seek out the safest haven they can reach
in the time allowed. While some will reject a safe haven in a building only to be swept away
while crossing the floodplain, this occurs primarily when the excess evacuation time (E) is
positive and the vast majority of buildings are destroyed (29). That is, those fleeing must believe
that their building will be destroyed and that there is enough time to reach the hillside when, in
fact, there is not enough time. This is a very specific set of circumstances that inherently limits
the number of such cases. More importantly, the cases are most likely when a wall of water is
large enough to destroy most buildings, making them a small fraction of the total life loss in the
event. As such, it is not critical to treat them separately.

Generally, it takes far less time to reach an upper floor than to evacuate the flood zone for
several reasons: there is little need to get dressed or to grab belongings, the route is a matter of
habit requiring little planning, one can avoid extreme weather conditions, one can continue
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moving after flooding blocks escape outside, people most often sleep upstairs, and the trip takes
only about 5 — 30 seconds to complete for an entire family. Even when a flood is rising in the
first floor, the walls often provide adequate shelter to allow people to wade, swim, or ride the
current to the top of the stairs (18). As an indirect example, although the trailer homes in subPar
26.3 were swept off their foundations and often destroyed within minutes of the flood’s
onslaught, the numerous descriptions by survivors indicate that there was a short window of time
when families gathered together and sought shelter before the trailer walls were destroyed.

The result is that most people reach the safest zone that is accessible and temporal
considerations apply primarily to reducing Par; to Tpar;. These authors are aware of only four
historic contexts in which people have not reached a safe haven when it existed on an upper floor
of the house they occupied:

1. They chose to attempt to evacuate and were washed away in the open floodplain
(29).

2. They were asleep or awake while downstairs at night. Without any sensory
warning, the flood burst through the windows, walls, or doors with such
turbulence that it made it impossible to wade or swim to the stairway before they
were swept away or the room was flooded to the ceiling (18.20).

3. A flood similar to the one just described but with slightly less violence and speed
overcame someone with limited mobility, such as an invalid, a young child, or a
baby that was swept out of its parent’s arms. It should be noted that adults and
children with limited mobility are more likely to sleep downstairs, placing the
most vulnerable in the place of greatest danger (18.18).

4. The ground floor had no ready access to the floors above (18.23).

In some cases, people open a door, begin to run or wade for the hillside, or try to climb
into a car in an attempt to evacuate. When they realize the flood is rising or approaching too
quickly to make it, they turn around and run upstairs (17, 18.1).

We can apportion Tpar; among the flood zones its members are most likely to occupy by
apportioning the physical havens that are accessible. As indicated above, access to a haven is
rarely limited by temporal consideration when the haven is in the building that people are
occupying, so temporal considerations can often be ignored. When a region includes buildings,
the subPar should be defined homogeneously with respect to evacuation times so that Tpar; can
be distributed according to the average occupancy rate in each type of structure present. Each
flood zone is exclusive of the others such that, when treated as a fraction of Tpar;, the safe zone
density (Szd) + the compromised zone density (Cozd) + the pseudo-chance zone density (Pczd)
+ the chance zone density (Czd) = 1.0.

As an example of the assignment of zone densities, if a subPar consists entirely of two-
story buildings that will sustain major damage or be destroyed and half of those buildings are on
ground high enough to maintain a safe haven, then the safe zone density (Szd) = 0.5. This value
might increase if an additional row of mobile homes was located in a buffered backwater where
they were expected to float a short distance inland. This value would decrease if the flood was
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expected to rise so quickly and with so little sensory warning that a portion of Tpar; would be
unable to reach the second story. If some of the buildings were frame houses and 30% of the
buildings were expected to either float more than 300 ft downstream, lose second-story walls, or
flood 4 — 6 ft deep in the second stories with high velocity currents, the compromised zone
density (Cozd) = 0.3. If it was thought that half of this 30% might be destroyed, then Cozd =
0.15 and the pseudo-chance zone density (Pczd) = 0.15. That leaves a chance zone density (Czd)
~ (.2 for buildings that are almost certain to be destroyed.

Since rooftops are much less accessible than upper floors, one would want to treat them
accordingly in a model. One way to do this is to first estimate how many rooftops are accessible
using emergency means, then estimate the times needed to reach the rooftops and eliminate any
rooftops that cannot be reached before wading is prohibitive on the highest floor. As a simplified
approach, any rooftops that cannot be reached within 2 minutes from the ground floor or within 5
minutes from an upper floor should be eliminated. Those eliminated but not flooded become
chance havens instead.

Attics should be treated as described above for rooftops, except that they do not generally
provide chance havens.

When safe havens consist of high ground, they provide a convenient alternative to pre-
flood evacuation when the excess evacuation time (E) is small or negative. For example, when
people dwell on an island that is submerged by a flood, E may be quite negative due to the length
of time required to get off the island. However, there may be patches of relatively high ground
that allow people to safely stand in shallow water (a safe haven) while their houses are washed
away nearby. The same can hold true for any location cut off from the edge of the flood by
bridges, barriers, or distance. In such cases, the loss of shelter does not reflect the nature of the
flood experienced by the residents, since the residents are not located among the
structures(18.21). It should only be assumed that residents evacuate to such locations when E is
small or negative, the representative evacuation time (Ret) is greater than a couple minutes, and
houses have more than minor damage or are single story.

Trees are probably the most difficult safe haven to predict. However, people do not
generally climb trees unless they are in the open and there is insufficient time to reach a building
or the hillside. As such, trees generally play a significant role only in campgrounds and other
outdoor settings, where their concentration should be given due consideration (3). People
occasionally climb trees when a flood overtakes them while they are running across a floodplain,
but the flood must rise in the very narrow range that prevents wading but does not cause
toppling. Hence, more often than not, trees play an important role among dwellings only as
chance havens, as people are swept off the floodplain or out of buildings and they pull
themselves into trees as they are swept underneath.

The value of trees as chance havens depends on their density in an area, their ability to
withstand the flood, and the velocity of the current. As the depth and velocity of a flood
increases, trees are more likely to topple, provide a dangerous object against which people are
killed, or become impossible to grasp and hold onto without being submerged or torn away.
Generally speaking, if houses are destroyed, trees provide no refuge except where they overhang
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near shore. Where housing damage is minor, trees are not needed for shelter. Where houses have
major damage and upper-stories are not plentiful, trees can play an important role along with
rooftops and other floating debris.

Lethality Rate Outside Safe Havens
(Ptpar;, Ls, Pt, Ft; L, P;,
Tpar;; Ln, Lnf, Li,, Ling)

Life loss is a function of distance from a dam only as it is affected by warning times,
depths, velocities, widths, loss of shelter, or other variables that are themselves indirect functions
of distance from the dam. As the original wave increases in depth and magnitude when the
average warning time (Wt,,,) = 0, life loss can be extended indefinitely downstream until the
wave itself loses lethal potential.

As testimony to the high lethal potential outside of safe havens, whole families often
perish together when houses are destroyed or they are overcome while crossing the floodplain
(17.1). Atypical events that cost lives and atypical events that save lives are both common (6,
17). This is due in part to the dual nature of chance havens: they can either kill or save. The
following sections examine the lethality rate outside of safe havens on a location-specific basis.

In Wading Depths

Waders in catastrophic floods are much more likely to be swept away than waders in a
laboratory channel exposed to the same average depth/velocity combination. The following
historic examples indicate why:

1. Real floods often generate surges or waves that greatly exceed the average flow
conditions, sweeping people into deeper water.

2. Real floods hide holes, logs, curbs, ditches, side stream channels, bushes, and other
obstacles that cause waders to fall into deeper water or trip unexpectedly.

3. Real floods contain up to 50% sediment, increasing the flood’s momentum and
increasing a wader’s buoyancy, both of which promote toppling. In extreme cases, the sediment
can also trap a wader’s feet or legs, hindering or preventing movement and possibly burying him
or her.

4. Catastrophic floods often arrive as a wall or a sudden surge against which it is
difficult to brace, especially while running.

5. Real floods are highly turbulent, making bracing and balancing much more difficult.

6. Real floods typically carry a lot of large debris, which can easily knock down a
wading adult.

7. Real floods often increase in depth over time, so any delays such as stumbling can
eliminate the opportunity to complete a crossing.
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8. Inreal floods, a wader may not be wearing shoes and natural surfaces or mud may
hinder traction.

9. An adult may be able to wade, but it is common for babies and young children to be
swept out of their arms by the rising current, by a sudden wave or surge, when struck by debris,
or when the adult falls.

10. Among waders, strength and stamina are key factors, so size, age, gender, and
general health are all important variables.

11. If the individual is wearing boots or waders, these tend to fill with water and catch
the current, pulling the person downstream and toward the stream bottom. Modern, tight-fitting
neoprene waders, however, are less susceptible to this and increase a person’s buoyancy.

Imagine an experiment in which 100 identical individuals are placed on a floodplain, the
depth or velocity is held constant at each location, and the other variable (depth or velocity) is
varied over many repetitions of the experiment. The flood is allowed to behave like a typical,
historic, catastrophic flood. Now plot the parameter that is allowed to vary (depth or velocity)
against the average lethality rate.

The resulting plot, a cumulative distribution function, is likely to follow a steep S-curve
resembling a graduated step-function. When flooding is minor, the proportion of the threatened
population that perishes (Ptpar) approaches zero: virtually everyone manages to wade to dry land
or a safe haven. When flooding becomes challenging to the point that movement is slow and the
chance of falling and regaining one’s footing is high, shorter or weaker individuals risk being
swept away. If the waders are carrying babies, young children, or helping those with limited
mobility, many of those being carried or assisted will be swept away. If there is an abundance of
large debris, it will knock the weak and the strong alike into the flood. As conditions worsen,
approaching the limits of wading, the number swept away will rise exponentially as they teeter,
slip, get hit by waves, step into depressions, get hit by debris, get temporarily released by
someone carrying them, or otherwise stumble. The fatality rate for those swept away will be
high, because momentum will make it difficult or impossible to regain their footing and they will
be swept into deeper and swifter water with greater turbulence. Survival will depend to a large
extent on chance. The currents must keep them at the surface, preferably sweep them near a large
floating object, steer them clear of fatal collisions, and ultimately deliver them to a place where
they can exit the flood—overhanging tree branches, the roof of a stationary building, a backwater
near shore, etc.

The likelihood of a flood providing the conditions needed for survival decreases
exponentially as the flood increases in velocity and depth since both of these conditions are
accompanied by an increase in turbulence. This turbulence pulls people and debris underwater,
renders swimming ineffective, forces air out of peoples’ lungs, and causes direct physical harm.

Historically, the vast majority of people who have been swept away have died. Among
the cases studies, the lowest characteristic depth for a high-velocity flood passed through the
campground on the Arés Alluvial Fan in Spain. The maximum depth was about 3.3 ft, with a
characteristic depth around 3 ft. Of the 150 campers present, 58% perished. Most of the survivors
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climbed trees or found shelter in buildings, so 80 — 100% of those swept into the current
drowned. In events with greater depths, nearly everyone has drowned who has been swept away.

These dynamics suggest the pattern of life loss found in Figure 6.1 for those in the flood zone
without shelter. The flat portion to the left represents flooding through which it is easy to wade.
The initial gradual rise accounts for mishaps, followed by less capable waders and babies or
young children swept out of adult’s arms. Life loss then increases rapidly as healthy adults of
various strengths and sizes begin to be swept away. Survivors are primarily limited to those who
do not lose their footing or who manage to cling to a pole, wall, roof, tree, or other anchor. As
the force of the flood makes it impossible to hold onto stationary objects, people in open water
are at the mercy of the flood and life loss rapidly approaches 100%. The ones who survive are
those that are immediately carried by a wave toward shore, manage to use debris for flotation, or
are washed to a tree or rooftop. At some point, a flood becomes sufficiently violent to pull even
large debris beneath the surface, making survival extremely improbable (29, 31, 32.1, 35). In
such cases, the only survivors are those who are tossed onto land or into buildings at the edge of
the flood where depth*velocity values are smaller (35.1), and those dug out of mud when a flood
passes in less than 5 minutes (32.1).
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Figure 6.1. An illustrative distribution of average fatality rate based on the peak depth*velocity a
heterogeneous group of people encountered above an open floodplain. This graph
applies to wade fishermen, those camping in tents, those overtaken while evacuating
on foot, and those swept out of a building or other refuge into the flood.
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In Drifting Depths

Catastrophic flood waves are violently turbulent (see the previous section on flood
dynamics). As such, even strong swimmers are tossed about like debris. Where velocities are
high and depths prohibit wading, most of those swept away drown or experience lethal injuries,
with some experiencing dismemberment or extreme disfigurement. When velocities are high and
depths exceed an event-specific cutoff of about 6 to 20 ft, the fatality rate generally approaches
100%.

In light of how difficult it is to reach or stay at the surface in a turbulent flood, it is
generally safer to be swept off a roof or out an upper-story window than to be overtopped by a
wave while on the floodplain or in a lower story. Those who reach the surface can survive if they
can reach a permanent chance haven, such as a rooftop or a tree top; or if they reach a drifting
chance haven that they can ride until they are rescued, they wash to shore, or they climb to safety
across a debris dam.

In Buildings

Death in a building typically involves one or more of the following: 1) being trapped
underwater when the flood rises to the ceiling, 2) being struck by debris driven through the wall,
3) being struck as the structure collapses, or 4) being washed out of the building to perish
downstream.

Because structural members are more buoyant in water than in air, the risk of being killed
by falling members appears to be greatest on floors where the flood is least deep. When a
structure is rapidly torn apart by a flood wave, the occupants are often driven into the open
current while still alive (17.3, 26).

In buildings with major damage (Ls = M). When structural damages are major [loss of
shelter (Ls) = major (M)], the internal environment in the building is usually a mix of areas that
are highly lethal and relatively safe. As in buildings that are destroyed, lives are lost when
occupants are injured by the building itself or by passing debris; when they are washed through a
window, door, or wall; and when they are trapped underwater. As in buildings with minor
damage, flooding on an upper story or on the roof can be sufficiently shallow or quiescent to
make survival virtually certain (18.10). Hence, the elevation of the top story in relation to the
peak elevation reached by the flood is the single most important determinant of the rate of life
loss in buildings with major damage.

The rate of life loss will follow a sharp S-curve resembling a step function when graphed
against depth*velocity (see Figure 6.1). The dynamics are similar to those for waders, except that
people are wading on an elevated floor instead of the floodplain and there are more items on
which to float, stand, or cling. This will shift the graph toward the right and flatten the curve.
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When water rises behind a door, the pressure can make it difficult or impossible for an
average person to overcome the pressure and open it (17, 18). Survival for an occupant of a
building who is not swept into the current occurs in only three places: Safe havens, pseudo-safe
havens, and aerated havens. Every other location is completely submerged or destroyed.

Conditions in safe havens and pseudo-safe havens are comparable to when loss of shelter
(Ls) = low (L). The historic rates of life loss have approached zero when the safe haven or
pseudo-safe haven was not eliminated.

In aerated havens, occupants require more strength, stamina, and good fortune to survive
than in a safe haven since the occupants have a higher degree of exposure to the flood.
Nevertheless, there is a higher survival rate than in the open current. Chance plays a large role in
whether or not an aerated haven remains or is destroyed.

In buildings that are destroyed (Ls = H). Life loss approaches 100% for the threatened
population (Tpar) occupying buildings that are destroyed. Survival largely depends on chance
havens (18:7).

In Automobiles

If a flood sweeps a passenger vehicle into water more than 4 ft deep, those inside the
vehicle are virtually guaranteed to drown unless they are rescued while the vehicle is still
floating (9.3, 17.4). There were no exceptions in the historical events that were examined.
Consider the following obstacles: External water pressure makes it difficult or impossible to
open a car door or a car window while underwater. If a window is opened or broken, the flow of
water and confining nature of the vehicle make it very difficult to exit the vehicle until it is
completely filled with water. By then, the occupants will be disoriented and nearly drowned. If
someone escapes the vehicle, the turbulence of the water will make it extremely difficult to reach
the surface. Throughout, the flood will be dark with sediment, making it nearly impossible to see
once submerged. Combined, these factors make it extremely difficult for passengers of a vehicle
to survive after being submerged.

The following are all contexts in which occupants of vehicles can die during a flood:

1. When a flood undermines a section of road or weakens a bridge, causing it to
collapse as an unsuspecting motorist passes overhead. Similarly, the road can collapse at a
distance too short for stopping (14).

2. When a motorist drives onto a flooded bridge or stretch of road before they see the
danger. Drivers are most vulnerable to this at night during driving rain or fog (34.2).

3.  When a section of roadway (perhaps across the dam crest) erodes away at a blind
spot (due to darkness, mist, rain, a sharp corner, etc.) and motorists subsequently drive off the
cliff and crash into the ground or stream (27.1).

4.  When people attempt to drive out of a long canyon instead of climbing the hillside
and the flood overtakes them (15).
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5. When a road follows a stream and a wall of water catches motorists by surprise or
travels faster than the vehicles (31.6).

6. When a road follows a stream and motorists become stalled in incipient flooding,
remain with their vehicles too long, and are swept away as the flood rises or suddenly surges (1).

7. When a sudden surge of water sideswipes a vehicle on a dry or mildly flooded road
or bridge (23.1, Nix Lake Dam failure).

8.  When a motorist decides to cross a submerged river crossing or a flooded
intersection near a canal, gully, or flooded drainage ditch, and the flood sweeps the vehicle into
swifter and deeper water (8).

9. When an evacuee attempts to move a parked vehicle out of harms way and the flood
rises too quickly (there have been many close calls of this nature in driveways).

10. When an expanse of city streets is inundated slowly or quickly (16.1, 25.2).

11. When a driver has a fatal accident while evacuating (we found no historical
examples).

12. When an employee is driving on a dam while it fails, either to examine it or attempt
repair work while driving heavy equipment (we found no deaths but, but several close calls).

See automobiles under the section on subPar type and evacuation modes for additional
insights that pertain to motorists and their passengers.

In Trains

Depending on the depth of flooding and whether or not a train is moving, a train is most
similar to either a mobile home (as was the case outside Johnstown when South Fork Dam failed
in 1889) or an automobile, though in both cases a train is less buoyant. The impact of a crash can
cause deaths even when people stay dry (19).

In Campgrounds

Campsites are often located near a river where valleys are steep and narrow so
recreationists can readily be exposed to any combination of high velocities, great depths, and a
wall of water (3). Survival largely depends on evacuating, climbing a tree, or reaching a sturdy
outbuilding (3). Safe havens persist only if the flood does not topple the trees and buildings. If
there is not time to climb a tree before the flood arrives, the flood must have sufficiently low
velocities that someone can grab a tree while in motion without being torn away.

Unfortunately, campgrounds can be one of the most difficult areas to reach with an
official warning (16.2). Many campsites are informal and isolated, away from established
campgrounds; established campgrounds often have no telephone or ranger on-site; it may take a
long time to drive to a campground; and campers are less likely to listen to mass media reports
than those in residential areas or automobiles (16.2, 16.3).
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While sensory clues often give a warning in the quiet of a campground (Little Deer Creek
Dam, Utah, 1963), the warning may be very short if there is no wall of water to cause trees to
crash (3). Even with a wall of water, if the flood travels quickly, is of great depth, or people are
asleep, the average warning time (Wt,,,) may be less than the time needed to evacuate (16.2,
16.3, 31.4, 31.5). This said, there are two factors that make evacuation easier:

1. The representative evacuation time (Ret) is often quite short if the valley has steep
hillsides—on the order of 0.25 — 2 minutes during the day and slightly longer at night.

2. Due to proximity, shouting can be readily heard, and so a warning can propagate
very rapidly through a campground, even at night.

In Rivers (waders and swimmers)

Waders and swimmers are more vulnerable than recreationists on the bank are because
their evacuation is slowed and they are more likely to be caught in deeper water without a refuge.
Due to the popularity of tailwater fisheries below dams, it is dangerous when a gate fails, a gate
is opened very quickly (2), or when water levels rise during hydropower peaking or startup. Few
people wade or swim more than an hour after dark, so this type of subPar can be ignored at such
times.

Along Shore (hikers and the curious)

Although there were no subPar in the data set consisting of hikers, reasoning suggests
that this subPar would be nearly identical to campgrounds except for the following:

1. There is little chance of delivering an official warning, unless Wt is more than 2 — 3
hr.

2. Hikers may climb canyon walls or reach other places from which a rapid evacuation
is impossible.
3. This subPar can be largely ignored more than an hour after dark.

There have been several examples of onlookers watching a flood who were subsequently
trapped or killed (25.2, 29.18). This can be a form of convergence.

In Boats

Due to its density, a flood wave entering a lake will generally plunge toward the bottom,
creating a powerful, choppy undertow near shore. By contrast, it may cause only a small swell at
the surface more than a few hundred feet from shore. The exact dynamics depend on the depth,
size, density, and orientation of the reservoir in relation to the incoming flood. Where the
described pattern holds, boaters are likely to be capsized and pulled underwater near the mouth
of the river, but not greatly endangered elsewhere.
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Boaters in a reservoir above a dam that fails are also in danger, especially if they are near
the dam.

Regardless of their location, boaters increase their chances for survival dramatically when
they wear life jackets (22.5).

In high velocities, boaters on a river risk capsizing or colliding with an object in a violent
manner. A craft’s high profile and streamlined shape can cause it to become airborne in ways
that are less likely among those riding rooftops or logs. Consider the following eyewitness
account (16.1):

There was [this] boat [that] came down the creek with three or four people in it,
moving at a tremendous speed, totally out of control and about the time it got to where
the water fountain was, the boat shot 30 or 40 feet straight in the air. This was the last
time we saw the boat or the people. (Natural Disaster Institute, 1976, p. 371)

As with hikers, this subPar would be very difficult to warn. The evacuation rate would
almost always be longer than for any other recreational category. Fortunately, this subPar is not
likely to exist when a single dam fails by overtopping as the result of a flood, since boating is
uncommon during extreme weather. Sunny-day dam failures would, however, pose a particular
risk to boaters. The popularity of guided fishing trips, river rafting, kayaking, and personal drift
boats has increased dramatically over time. Many rivers experience boats year round. As such,
this type of subPar may become more relevant to future failures than to historic ones.

In the Cold

During failures in the western world, where flooding usually passes within 5 minutes to 3
hr and people reach shelter within 0.25 — 8 hr, deaths attributed solely to exposure are rare, but
they have happened (6.1, 18). However, it would be difficult for researchers to distinguish deaths
due to drowning and deaths due to hypothermia when both sets of bodies are found in the flood
and detailed causes of death are not listed. In theory, if a flood were at extreme winter
temperatures, one might expect those unable to escape the water and find warmth to become
unconscious or perish within 5 — 20 minutes. For some, the immediate shock would make
breathing difficult and drowning much more likely.

Lethality Rate Inside Safe
Havens (Ls, Pt, Ptpar;)

Since most safe havens are found in buildings, this discussion is limited to that context.

In Buildings with Minor
Damage (Ls = L)
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Life-loss rates are essentially zero when loss of shelter (Ls) = low (L). Death can result
when the first floor is flooded to the ceiling, but regardless of the structural damages, such cases
should be considered major damage in light of the loss of shelter.

When buildings experience minor damage, debris and high velocities do not endanger the
occupants. Generally, a safe haven remains on the ground floor. If depths are shallow, the flood
has little lethal potential. If depths exceed 4 or 5 ft, the water must have low velocities to avoid
causing major damage. In such situations, deaths are quite rare. They result when someone is
trapped on the ground floor and the water rises to the ceiling or when a child who cannot swim
falls off a bed or other perch while no adult is in the room. Those who have limited mobility
usually survive if someone is present to balance them on a floating mattress or other elevated
surface. Even when a safe haven is lost and water comes within a foot of the ceiling, the water is
sufficiently quiescent to allow most people to survive by treading water or by standing on
furniture. As such, deaths are usually caused by limited mobility, an inability to swim, or other
anomalies like electrocution.

Death by exposure, disease, or starvation is possible if the flood traps people for
prolonged periods or the flood contaminates food and water supplies in less developed regions.
Such was the case when the Banqgiao and Shimantan Dam failures stranded people for many days
amid very expansive flooding, although these deaths were excluded to make the subPar more
pertinent to the west (10).

In Buildings with Major
Damage (Ls = M)

The most consistent factor governing the death rate among occupants of buildings is
whether or not there is a safe haven on the highest floor. This follows from the historic pattern
that very few people die in safe havens and most people die when exposed to the full force of the
flood (see the section on lethality rates outside of safe havens).

When a building has one or more upper stories and major damages are limited to the
lower stories, those in the upper stories remain dry or experience the flood as if it causes only
minor damage. When velocities are not high enough to sweep people out of a room, 3 — 4 ft of
flooding above the highest floor produces a death rate comparable to that in buildings with only
minor damage. This rate is usually zero, except in anomalous cases, such as when young children
are trapped alone in a room and one or more falls into the water off a floating bed.

If velocities are low, people can survive even when flooding is nearly two-stories deep by
staying near a second-story ceiling for air, either by treading water or by standing on furniture
(18.9, 18.10). Such flooding exceeds the cut off for a safe haven, but it is still more sheltered and
much safer than the open current.

A wooden house will most likely float away before the water reaches the second-story

ceiling, maintaining a pseudo-safe haven until the building sinks or is torn apart. When houses
have more than one story, the bedrooms are usually on the upper floors. This can significantly
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reduce life loss at night when a flood may fill the lower floor before the occupants are aware of
the danger (18).

Lethality Rate Outside of the
Flood Zone (Ft, Schvq)

Deaths outside of the flood zone fall into five categories:

1. Those who are injured in the flood, but who wash to shore while still alive and die
within hours or days from inhaling water and mud, exposure, internal bleeding, or other
traumatic injuries (6.1, 17.6), or appear to have injuries from which they can recover, but die
days later from a brain hemorrhage or other complication of an injury (17.3).

2. Those who die of a heart attack, stroke, or other complication brought on by fear for
one’s personal safety.

3. Those who die of a heart attack, stroke, or other complication shortly after learning
that their loved ones have perished (17).

4. Those who commit suicide during or after the flood (Teton Dam, 1976).

5. Those who lose the will to live and rapidly deteriorate or die in their sleep within a
few days, weeks, months, or years (17).

The percentages of deaths in categories 2 and 3 are small to the point of being negligible,
especially since deaths of this nature are most likely when a large number of people die in a
flood from other causes. Heart attacks while drowning or being swept downstream would be
difficult to identify and should be considered general drowning deaths.

Note that many of these deaths are omitted from the official lists of flood-related
fatalities. In some cases the individuals may not have been a part of Par or the surrounding
community.

Life-saving Interventions
(Rr, Sh, Ch, Psh, Ptpar;)

For many, rescuers must reach them by helicopter, crane, or other extraordinary means
within minutes if they are to be saved. Consider the helplessness of an eyewitness firefighter
(16.1):

The water was chest high and the front of the truck was floating from time to
time. From the rear of the fire truck we could see with the aid of large spotlights . . . ;
people were clinging to anything that would float. Roofs and walls from damaged homes
all had people clinging to them, floating refrigerators, cars and propane tanks. People
were hanging in trees, the roar of the water was terrible and the sounds of screams [for]
help were even louder than that. People floated by just out of reach and we couldn’t get to
them . . . . The screams died down as people fell from the trees and rooftops and were
swept away. (Natural Disaster Institute, 1976, p. 30)
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The floods with the greatest life loss have generally claimed their victims before professional
rescuers were able to arrive. The task of the professionals was to search for the dead and injured
after the flood had receded.

When people can reach treetops, housetops that are not moving, or islands, hundreds or
thousands of people can be rescued by helicopter or boat over several hours, but in such cases
most of the individuals are not at high risk of drowning and could survive while waiting for the
flood to pass (9).

People have rescued flood victims by forming human chains to reach stranded motorists,
waders, or those already adrift; by pulling a drifting swimmer through a second-story window; or
by holding them on a floating mattress while waiting for the water to subside inside a building.
Overall, however, the most common rescues have involved those who risk their lives to provide
early warnings or to assist weaker individuals to shore while it is still possible to wade.

When a flood passes quickly, lives can sometimes be saved by digging victims out of the
mud and by rushing those with serious injuries to nearby hospitals (17, 32). Since such quick
floods are uncommon, however, those in the most danger are least likely to be rescued because
they are swept out of reach or they are submerged. Thus, often those who are rescued could have
survived had they not been rescued, or if they had been rescued after the flood had passed, and
the rate of life loss is reduced less than (number rescued)/Tpar;.

As a sidebar related to the relative ineffectiveness of modern rescue resources at reducing
life loss, one should not assume that modernity in general necessarily decreases fatalities during
flooding. Consider that automobiles do not necessarily enhance survival, for the following
reasons:

1. Horses and buggies could transport people quite quickly.

2. A horse can be a superior means of evacuation to a car since it is not dependent on
roads and can run up steep hillsides.

3. Historic evacuees were less likely to get stuck in traffic gridlock.

4. It is the modern addiction to automobiles that often leads to fatalities. A high
percentage of deaths during flash floods accrue to motorists who voluntarily try to cross flooded
roadways or bridges. During the Big Thompson flash flood, those at greatest risk were those who
attempted to drive out of the canyon, and those least at risk were those who chose to climb the
canyon walls on foot (Gruntfest, 1977).

Other considerations include the following: In narrow floods, the fastest way to evacuate
is on foot. It can even be quickest for those with limited mobility, since family or neighbors are
usually willing to assist them. Even in wide floods, evacuation on foot can be fairly rapid. The
average adult walks 3 miles per hour and can jog much faster. A healthy adult empowered with
adrenaline should be able to clear even a very wide floodplain in 30 or 40 minutes. Finally,
evacuation warnings do not necessarily propagate more rapidly today. People were more familiar
with their neighbors in the past and shouting readily penetrated into poorly insulated buildings.
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There are, however, modern advantages: Warnings can be delivered via loudspeakers on
police cars or helicopters. Modern rescue equipment, especially helicopters and trucks with
cranes, provide distinct advantages. Modern building codes preserve havens more readily.
Wireless communication has the potential to facilitate warnings even when wired systems are
destroyed, although cellular phone systems can quickly become overwhelmed during
emergencies. Detailed census and GIS databases and trends toward registration at campgrounds
and wilderness areas may improve our ability to warn and to identify missing persons.

Overall, increased casualty rates prior to the modern era can probably be attributed to
these main causes:

1. The 100-year floodplains were often developed.

2. High hazard dams were more likely to fail.

3.  Warning time was often less due to limitations in monitoring and detection systems,
and limitations in communication pathways over long distances.

4. Dam owners were reluctant to issue timely warnings.
5.  Mass communication was not possible.
It follows that older cases of dam failure can be studied alongside modern cases, so long

as these difference are kept in mind.

Complications or Aberrations
(M1, Ac, Td, Ts)

What follows is a list of historic or readily conceivable complications that could be
repeated in future events to increase the likelihood of life loss:

1. Assuggested in Chapter I1, if an earthquake impacts a community as well as a dam,
it can conceivably block evacuation routes, start fires, trap people in buildings, and disrupt
communications before a flood arrives, all of which could increase life loss.

2. The nature and concentration of a debris load influences the likelihood that someone
can drift to safety while avoiding being crushed or pierced. Examples of particularly lethal debris
loads include 700,000 cords of logs from a paper mill (6) and miles of barbed wire.

3. Anirony of floods is that they sometimes start fires when lanterns are tipped, gas
mains rupture, power lines break, transformers or electric substations explode, or furnaces are
damaged. If floating debris such as a house catches fire, the fire can spread to other houses or to
a debris dam. This greatly increases the danger to the occupants of the houses and to victims who
are still alive but who have been swept to the debris dam (15, 16.1, 18.25; and South Fork Dam,
in Johnstown, Pennsylvania, in 1889).

4. Although power companies typically shut off the power to flooded neighborhoods to
protect victims and rescue workers, while broken wires are live they pose a threat of
electrocution to waders or those who come in contact. Deaths of this nature are rare.
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5. Lives can be lost in hospitals when flooding does not impact the patients or
personnel directly if the flood prevents essential medical professionals from reaching the
building or eliminates critical power sources. Natural gas lines and electric power lines are
generally shut off to flooded regions to prevent leaks, fires, and electrocutions. Propane and gas
tanks can readily float away. Combined, this can render both the main power and all backup
generators inoperable. Such was the case in subPar 16:1, but there is no historical record of
actual deaths due to this type of event in the sources examined.

6. Invalids are dependent on others for evacuation. When individual warning times
(Wt;) are short, increased life loss can result as more mobile individuals linger to try to help the
less mobile evacuate (16.1).

7. Both summer and winter floods sweep snakes out of riverside haunts, adding them to
the hazards in the water and leaving them behind in inhabited areas. This increases the likelihood
of poisonous snakebites during and after the flood, although the frequency and fatality rate of
such bites is still low (17, 22).

8. Apart from drowning, prolonged floods or floods in winter can cause fatal
hypothermia (18.28), but deaths specifically identified as such have been rare.

9. Convergence deaths result when onlookers come to watch the flood and
inadvertently become trapped and swept away (25.2).

10. Certain characteristics of floods can make an accurate accounting of the death toll
difficult or impossible:

a) Often, whole families perish together, sometimes with their neighbors, so no
one remains who can identify them or tell how many people were in the home at the time
of the flood.

b) Floods can so mangle bodies as to make identification impossible.

¢) Floods can wash victims dozens of miles downstream or bury them in mud,
making recovery difficult.

d) It is difficult to dig for the dead using power equipment, since there is a
reluctance to tear bodies apart.

e) It is difficult to know how many tourists, transients, motorists, or visitors were
In an area.

f)  When homes are destroyed, people can scatter all over the country to stay with
relatives. This makes it difficult to equate a list of missing with people who died.

g) Usually no records are kept of those who die weeks or months after the flood
due to indirect causes.

h) Death records can be county-specific with no master list.

1) In many cases, companies and foreign governments have not been eager to fully
account for the dead and missing due to issues of culpability and liability.
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7)) When a flood enters the center of a reservoir at an orthogonal angle, the dense,
sediment-laden flow will sink, generating strong, spiraling currents near shore. This can
create or enhance dangerous undertows many miles away that persist for some time. In
this manner a flood can kill an unsuspecting swimmer the following day without being
attributed to the flood (22.7).

Post-flood Psychological
Trauma (Schvq)

When homes are obliterated, people die, and people are relocated, it destroys social
networks and a highly valued sense of community and belonging. This can generate and prolong
extreme and debilitating psychological scarring (17).

The trauma of a flood with large life loss includes seeing a large number of naked,
muddied, and mutilated corpses, including friends and relatives. They are first seen floating by,
sticking out of the mud, tangled in debris piles, or washed into homes. They are then viewed
again as people search rows of bodies in temporary morgues, searching for familiar faces, hoping
for the best and fearing the worst.

Traumatic symptoms include an irrational fear of storms, even when relocated far above a
river; recurring nightmares; a desire to withdraw from social contact; an inability to return to
work; lethargy; drug or alcohol abuse; suicidal tendencies; chronic depression and apathy;
marital conflict or divorce, including blame for warning one set of relatives over another or
failure to save a child; guilt for surviving when others died; guilt for failing to save others or
viewing oneself as a coward; and early death after giving up the will to live (16.1, 17).
Disillusionment and a sense of personal violation can also follow, as there is almost always
widespread looting following a destructive flood (17).

The tendency of floods to kill people in clusters increases the emotional trauma and life!
style disruptions. As an extreme example, only one woman survived from a family group of 55
(35). A strong faith in God, His sovereignty, and in heaven, can help people cope with the death
of loved ones and move forward with healthy living patterns (26).

Applicability of Historic Events to
Future Events: Logic Behind
a Proposed Model

Logic Behind a Proposed Model

A flood is like a chemical element. While highly unique, each element is composed of a
small set of subatomic particles that are indistinguishable from the basic building blocks of every
other element. In isolation, the behavior of a single particle is impossible to predict: The
behavior of electrons is governed by their own motion—constrained by preferences for certain
energy levels and orbital configurations—and the random motion of other particles. However,
while one cannot predict the behavior of any individual particle, elements behave predictably on
a macroscale.
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In the same way, every flood is startlingly unique, but by progressively breaking each Par
down into more and more fundamental units, homogeneous base units can be defined that share
remarkably similar traits. Similar to the random motion of electrons, the outcome for each base
unit (a homogeneous group of one or more persons) depends on human motion and the random
motion of the flood. While one cannot know the outcome of any one base unit, it is possible to
describe its probability distribution. One can then sum across the base units using a Monte Carlo
simulation or the statistical means, in conjunction with their deviations, to estimate the likelihood
of various rates of life loss for a specific event.

Fundamental base units are homogeneous with respect to the larger environment,
temporal considerations, and the hydraulic characteristics to which they are exposed. Delineating
subPar according to Par type (Pt) neutralizes differences in the environment. Reducing like
subPar to like threatened populations (Tpar;) neutralizes temporal variations. Dividing each Tpar;
into homogeneous bins based on degrees of exposure neutralizes hydraulic differences. Among
buildings, this can be done by classifying Tpar; according to the loss of shelter (Ls). When Ls =
major (M), Tpar;j should be further distributed among flood zones [safe zone density (Szd),
compromised zone density (Cozd), pseudo-chance zone density (Pczd), and chance zone density
(Czd)]. Since some of these zones share the same homogeneous characteristics as when Ls = low
(L) or Ls = high (H), they are truly base units.

Role of Historic Events

Historic events are used to determine the probability distributions for each type of
fundamental base unit. Naturally, these distributions can be refined as more and more
homogeneous subPar are analyzed.

Since fundamental base units are homogeneous with respect to the surrounding
environment, temporal considerations, and the nature of the hydraulic exposure; it is not
surprising that their distributions during 19th and 20th century floods appear comparable (26).
This suggests two important insights. First, if modern rescue equipment is not immediately
available, loss of shelter is based on historic reality rather than a uniform construction standard;
modern dam safety standards are mute by assuming a failure; and the benefits of modern
warning technologies and transportation systems are neutralized by focusing on threatened
populations (Tpar;) and actual excess evacuation times (E); life-loss patterns should be consistent
across the centuries. Second, one can similarly mix ancient and modern failures when comparing
the evacuation nonsuccess factor (Ef;) = Tpari/Par; to E in one of three ways: 1) exclude
expansive floods for which automobiles or horses provide a distinct advantage, 2) include only
floods for which the average warning time (Wtay,) is sufficiently short that only evacuation on
foot is possible, or 3) adjust the representative evacuation time (Ret;) to account for the forms of
transportation that are/were available. One or more of these conditions is met for every event
characterized in the unpublished working documents and summarized in Appendix C, so the
current study can be used to predict future outcomes.

Since life-loss distributions can be expected to be consistent across time, they can be used
to predict statistical life loss in dam safety risk assessment.
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Limitations to Historic Events

While the death rate in a given level of hydraulic exposure is not likely to change across
the centuries, several things are likely to change and must be explored separately from the
current mix of events: 1) Since warning effectiveness (We) is improved with advancements in
communication equipment, monitoring equipment, monitoring procedures, early warning
systems, and emergency action plans, the warning time provided by the first official warning
(Wt) will not produce a uniform value for the average warning time (Wt,y,) across the centuries.
2) Since building codes change with time and country, loss of shelter (Ls) is specific to the
structures at a site. The likelihood that a flood will cause Ls = low (L), major (M), or high (H)
can only be explored coarsely using the present database. 3) If one explores the detectability of a
failure or the likelihood of a particular failure mode, the present database should be used with
great caution since dam safety engineering is an evolving science.
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CHAPTER VII

GOALS FOR A MODEL AND EXPLORATORY DATA
ANALYSIS

A Brief Review

It is useful to review the topics that have been covered in previous chapters. Chapters 1
and 7 present the nature of dam safety risk assessment, the important role life-loss estimates play
within that field, theoretical considerations relevant to model development, and the difficulty of
selecting an unbiased data set for regression analyses.

Chapter III presents every important, flood-related life-loss model that had been
developed or proposed up to 1998. The chapter describes the contributions and shortcomings of
each model in detail and concludes with a summary of essential model components and
considerations for representing those components.

Until recently, the DeKay-McClelland regression equation DM-2d was the dominant life-
loss equation in use. However, it has often been used in a manner inconsistent with its
development and in violation of the assumptions that must be satisfied for its estimates to be
considered reliable. Hence, Chapter IV explores this equation at length, raising important
questions about its credibility and its usefulness.

Chapter V provides an extensive list of variables that pertain in some way to life loss
associated with dam failures or catastrophic flood waves. Although many of these variables were
identified in some form by previous researchers (see Table 3.11 in Chapter III), this is the first
time that most of them have been given specific names, symbols, definitions, and categories by
which they can be coded. Other variables, especially those that show the greatest promise for
estimating life loss, have been defined for the first time. All the variables are summarized in
easy-to-use reference guides in Appendix D.

Chapter VI provides the historical and theoretical foundations on which one or more new
models can be developed. Table 6.1 details the ways in which people perish during floods and
Table 6.2 details ways in which people survive floods. Table 6.3 then offers a way to break
issues that affect the rate of life loss into 18 logical categories. The remainder of the chapter
catalogues numerous historical insights that are useful for gaining a good understanding of the
real-world dynamics within each category. These insights are supported by event
characterizations fully recorded in unpublished working documents that underlie the examples
and summaries in Appendix B and the master chart of characterized values in Appendix C; as
well as by other failure events that have been studied but not yet characterized.

The final category in Chapter VI describes the relevance of historical research to
predicting life loss in future or hypothetical events. This should be reviewed carefully, since it
presents the logic behind a conceptual model proposed in a companion working document
entitled, Working Paper Draft Report: A Proposed Life-Loss Model Under Development.
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An Overview of the Problem

On the scale of large populations spread across the length and breadth of a flood, every
catastrophic flood event is startlingly unique. When one considers that Chapter V and Appendix
D present over 90 characterizing variables that affect life loss in interdependent ways, and that
most of these variables can be described using four to six different ranks, up to 14 different
categories, or any number of different quantitative values, it is difficult to conclude that any three
or four variables can reasonably account for the variance in life loss across events. This is
highlighted by the fact that Brown and Graham (1988) and DeKay and McClelland (1993b) both
chose to omit certain cases as “outliers” even though those cases represent historical reality and
not experimental error.

Moreover, given the relatively small number of available data points—one for each
historical flood event—the statistical significance of a regression involving numerous variables
is necessarily unsatisfactory. Even with only three independent variables, the very broad
confidence limits displayed in Table 4.1 and Figures 4.1 — 4.4 illustrate this problem.

Generally, analysts have felt uneasy assuming that point estimates like warning time (Wt)
and dichotomous forcefulness (Fd) could fully capture the uniqueness of a large, heterogeneous
population. It is hard not to feel uneasy if the population at risk (Par) includes a small canyon
community just below a dam, campgrounds along the river, popular fishing holes or reaches for
rafting, bridges or stretches of highway that follow the river, a metropolitan community on the
open plain, and perhaps a marina in the reservoir below. To reduce the level of cognitive
dissonance, analysts have often attempted to select values for warning time (Wt;) and
dichotomous forcefulness (Fd;) that are specific to more homogeneous subPar (Par;) and then to
apply equations on that basis. Unfortunately, as described in detail in Chapter IV, the more
homogeneous Par or subPar become, the less they resemble the original data set, the more the
nonlinear relationships distort the results, and the less credible the results become in many cases.

More fundamental than questions about statistical validity are questions about human
confidence. Unless human decision-makers can have confidence in the reasonableness of an
approach to life-loss estimation, the results of any dam safety risk assessment will be viewed as
suspect. Indeed, in the absence of confidence, statistical risk assessments will be forgone
altogether. Chapters 3 and 4 have raised some serious questions that should give any risk
assessor pause before continuing with the current models, at least without making some attempt
to factor in the wide uncertainty in predictions.

Goals for a Solution

Shortcomings in current models suggest traits that would be desirable for the next
generation of models and the accompanying benefits of these traits:

1. A model should be intuitively transparent and logically satisfying to engender confidence in
its use and acceptance of its results.

2. A model should be empirically tested or empirically grounded to validate its predictions.
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3. A model should focus on homogeneous subPar or smaller units that maintain similar
characteristics across events. There are at least four reasons for this. First, the use of subPar
increases the number of data points in a data set. This in turn allows more variables to be
considered in a model, primarily through the separation of data points into distinct bins. Second,
life loss within homogeneous units is less dependent on the uniqueness of a given event than are
global Par; homogeneous units should provide a more consistent basis for prediction and
comparison across events. Third, by focusing on homogeneous subPar, events are broken down
into their most basic, shared components. These components could then, theoretically, be
recombined to represent events that are quite different on a macroscale. As such, a limited data
set can be used to make predictions regarding hypothetical events that are unlike those in the data
set. Fourth, as noted in Chapters 2 and 4, it is difficult to select a data set free from bias,
especially when life loss (L) is nonlinear with respect to Par; however, by basing regression on
homogeneous units, each equation or probability distribution becomes relatively free from bias.
Moreover, events with greater life loss can still reveal the conditions (homogeneous units) under
which life loss is expected to be small or zero.

4. A model should first reduce subpopulations at risk (Par;) to threatened subpopulations (Tpar;)
before applying life-loss relationships so that these relationships are independent of warning
times. This allows one to eliminate warning time (Wt) from a regression equation and to apply
life-loss functions derived from events with an average warning time (Wt,,) approximately
equal to zero or known values for the threatened subpopulation (Tpar;) to events with different
warning times.

5. Ideally, to reduce variance based on levels of exposure, members of a threatened
subpopulation (Tpar;) should first be distributed among approximately homogeneous flood zones
before applying life-loss functions. These flood zones are aptly called homogeneous units.

6. A model should rely on a variable like excess evacuation time (E) that describes the
interaction between warning time and evacuation time, rather than one in isolation from the
other.

7. In its simplest form, excess evacuation time (E) = the average warning time (Wt,y,) — the
representative evacuation time (Ret). Wt,,, is estimated subjectively based on historic
descriptions. It accounts for the source of warnings (human and environmental), the time
remaining before flood arrival, and the fraction of a population that gets warned. It produces an
average value, considering both representative values [sensory clues (Sc), time of day (Td), time
of week (Tw), time of season (Ts)] and point estimates [detectability (Det), warning time (Wt),
warning time for evacuation (Wt.), individual warning time (Wt;)].

8. Although the average warning time (Wta,,) has been assigned a single value for each historic
subPar in Appendix C, the value of Wt,,, will likely be known with less precision when
attempting to predict its value for a hypothetical, future event. To capture this uncertainty, it is
desirable to express Wt,y, as an estimated probability distribution, specific to the event under
consideration.

9. The representative evacuation time (Ret) is a subjective estimate based on historic accounts
of individual evacuation times under various conditions and logical assumptions about the rate at
which people can move in an emergency. As such, Ret considers important psychological
variables (the urgency of individual warnings, prior flood experience, the tendency of a message
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to cause or prevent panic), important physical limitations (the mobility of a population, physical
barriers like streams and fences, the distance to safety, the available modes of transportation),
whether families are together and their general preparedness to evacuate [preparedness (Pr), time
of day (Td), time of week (Tw)], climatic hindrances [time of season (Ts), attendant
circumstances (Ac), magnitude of local loading (M1)], and the nature of the population under
consideration [Par type (Pt)]. Like the average warning time (Wt,y,), the representative
evacuation time (Ret) can be expressed as an event-specific probability distribution.

10. Whether warning time is described as a point estimate like Wt or an average value like Wt,yg,
it transcends a single event only when related to the width of the floodplain, the mobility of the
occupants, the urgency of the warning, the time of day or night, and other factors that affect the
amount of time required to successfully complete an evacuation. The excess evacuation time (E)
captures this interplay. Also, by quantifying E based on subjective, logical, and empirical factors,
E is able to represent a complex function of dozens of other variables that could not readily be
analyzed using traditional statistical methods without an extensive data set. To explicitly capture
the uncertainty there is in knowing the true value of E before an event occurs, it can be expressed
as an event-specific probability distribution to reflect the distributions of average warning time
(Wtayg) and representative evacuation time (Ret).

11. A model should be linear with respect to the population at risk (Par) so that differences in the
proportion of lives lost do not vary with size but with the value of the variables that characterize
each homogeneous unit. In that way, the model can be applied to any size Par or to any size
subPar (Par;) without skewing the estimated life loss. Analysts who assess the same hypothetical
event should obtain similar estimates, regardless of how they divide Par into subPar. The model
would also make comparisons between dams in a portfolio more reliable. To assist in this
process, explicit guidelines should be prepared for model users.

12. A model should use average values for homogeneous subPar—preferably probability
distributions of average values for homogeneous subPar—rather than point estimates for
heterogeneous Par. Average values, while harder to quantify, more closely represent the
experience of each individual. This is more closely assured when subPar are relatively
homogeneous with respect to the characterizing variable under consideration. Conversely, point
estimates, like warning time (Wt), maximum depth (D), and peak velocity (V), do not necessarily
represent more than a tiny fraction of a subPar, making comparisons across events problematic.

13. One should be able to upgrade a model by refining past event characterizations, by
completing new event characterizations, or by performing experiments to improve estimated
distributions.

14. A model should either be simple to use or have the potential to be automated so that results
can be produced in an efficient and cost-effective manner.

15. A model should be versatile, able to produce a quick estimate for preliminary analyses or a
refined estimate for more detailed analyses. It should also be able to yield the expected life loss
(an estimate of the mean) or a range of possible lives lost in the form of a probability
distribution.
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16. A proposed model may be under development and thus depend on distributions or data that
are not adequately known at this time, but only if there is some reasonable hope of estimating the
needed information in the near future.

Important Empirical Distributions, Exploratory Data Analysis, and Potential
Trends

Introductory comments

Appendix C presents a table containing dozens of characterized variables for 179 subPar
and 163 non-overlapping subPar. To date, only the first stages of analysis have been possible. As
new data points are added to the data set, ever-richer avenues can be explored.

A caution should be noted, however. From the perspective of life-loss dynamics in flood
zones, every subPar is independent of every other subPar once they are reduced to the threatened
subpopulations (Tpar;) and fully characterized. That is, life loss is person-specific and location-
specific and not event-specific. Other variables, however, are event-specific [i.e., time of day
(Td), failure mode (Fm), height of the reservoir pool at failure (Hp), dam type (Dt), M, etc.] and
can appear to have statistical significance if some events are broken down into more subPar than
other events. The current data set includes 38 events, but some events like Dale Dyke (56
subPar), Mill River (19 subPar), and Buffalo Creek (16 subPar) dominate. The reason for this
dominance is because these floods passed through many communities and sources recounted the
events on a personalized scale that made it possible to identify both subPar and threatened
subpopulations (Tpar;). Fortunately, all of these events included subPar with loss of shelter (Ls)
=L, Ls =M, and Ls = H, so this greatly reduced event-specific biases.

For now, four tracks have been explored: 1) temporal relationships that provide a
reasonable estimate of the evacuation nonsuccess factor (Ef; = Tpari/Par;); 2) probability
distributions of the proportion of the threatened population that dies (Ptpar;) based on subPar that
are homogeneous with respect to loss of shelter (Ls); 3) exploration of variables that, in isolation,
might skew the proportion of the threatened population that perishes (Ptpar;) toward the upper
tail, lower tail, or central portions of distributions specific to levels of loss of shelter (Ls); and 4)
probability distributions for flood zones. In a sense, the third track was an early attempt to reduce
Ls to flood zones without defining flood zones directly or determining their densities.

An Expert System

The companion report, 4 Working Paper Draft Report: A Proposed Life-Loss Model
Under Development, describes a detailed conceptual model that relies, in part, on the data
analyses that follow in the remainder of this chapter. Apart from that conceptual model, the
subPar characterized in unpublished working documents form a database that can inform an
expert system. Given an expert system, the analyst can then select whatever criterion or criteria
he or she feels is most important for a particular subPar. For example, in the Vaiont failure, the
depth of the 325-ft flood was critical; in the Ards Alluvial Fan flash flood, the velocity of the 3-ft
flood was critical, in combination with high levels of exposure; and in the failure of the Bangiao
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and Shimantan Dams, the sheer expanse of the flood and the poor quality of the peasants’ shacks
was critical. Responding with the number of subPar the analyst requests, the expert system
would select the subPar that most closely matched the analyst’s criteria, produce their names for
reference, and produce customized life-loss distributions based on criteria selected by the
analyst.

Analysis

Overview of the Data Set

Although there were 163 non-overlapping subPar in the data set from 38 separate flood
events, threatened subpopulations (Tpar;) could be accurately quantified for only a fraction of
them. The reason is simple: the threatened population (Tpar) is seldom known or reported for
historic floods. The exceptions are when Wt,,, = 0 and Tpar = Par, or when an author recounts a
flood on a house-by-house basis.

Such floods are invaluable, not only because they portray the evacuation dynamics, the
flood dynamics, and the life-loss dynamics in great detail, but also because they often can be
broken down into subPar with known values for loss of shelter (Ls) and zone densities (Zd). In
all, there were 92 subPar for which both Par; and Tpar; could be quantified. There were 122
subPar for which loss of shelter (Ls) was known, but not all of these were homogeneous with
respect to Ls. Among subPar with Tpar; > 0, there were 38 subPar with Ls = H100%, 22 with Ls
=M100%, and 19 with Ls = L100%. When these subPar were further divided into zones, it was
possible to identify 45 isolated chance zones, three pseudo-chance zones, 11 compromised
zones, and 47 safe zones.

Reducing Par; to Tpar; (E vs. Ef)

It might prove useful in a model to estimate life loss based on the threatened population
(Tpar or Tpar;) rather than the population at risk (Par or Par;). If Par; can be reduced to Tpar;,
many aspects of warning time can be eliminated from subsequent consideration. An empirical
relationship between the excess evacuation time (E) and the evacuation nonsuccess factor (Ef)
provides a potential means of moving from Par; to Tpar;. This relationship is presented in Figure
7.1 and Figure 7.2.

Figure 7.1 illustrates the relationship between the evacuation nonsuccess factor (Ef) and
excess evacuation time (E) derived for those characterizations in the working documents for
which both the threatened subpopulation (Tpar;) and Par; were known. The uncertainty resulting
from historic variability can be maintained by expressing the evacuation nonsuccess factor (Ef)
as a probability distribution. Alternatively, one can draw a smooth S-curve through the figure
and treat the evacuation nonsuccess factor (Ef) as a point estimate. The choice depends on
whether life-loss functions are expressed as mean values or as distributions.
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Figure 7.1. The evacuation nonsuccess factor (Ef) vs. the excess evacuation time (E) when E is
close to zero.
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Figure 7.2.  The evacuation nonsuccess factor vs. the excess evacuation time (E) when the

basis of par (Bpar) is pre-evacuation (Pre) and post-evacuation (Post).

The first figure indicates that three out of the five largest values of E occurred because an
official warning was delivered before the dams failed. In two of these three cases, the evacuation
nonsuccess factor (Ef) was substantially higher than one would expect from the general trend in
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the graph (more visible in Figure 7.1). To these could be added subPar 35.5, the shore side
communities around Vaiont Lake. Those people had more than a day’s warning and were
forcibly evacuated by the police—in some cases twice—yet 158 people (Ef = 0.15) evaded
evacuation and died. That data point reflects a value for E of —5 minutes and an Ef value of 1.0
because Par was quantified based on those who evaded evacuation. The significance of these
three events is that warnings prior to failure often carry less urgency or credibility than warnings
during or after failure, and should not be treated in the same way. Additional evidence comes
from events that could not be included in the figure. For example, warnings were disseminated
from many sources, official and unofficial, up and down the Buffalo Creek Valley hours before
the dams failed. Despite these efforts, the warnings were generally disregarded due to the history
of false alarms in the region. Deaths occurred for about 12 miles.

Figure 7.1 narrows the scale to show the large number of E-values close to zero. The fact
that most E-values were close to zero is a byproduct of several factors: 1) The most common
type of flood event that leads to many fatalities is one with short warnings in a steep, narrow
valley and total destruction of buildings, 2) events through long, narrow valleys are most readily
broken up into many subPar, and 3) writers are more likely to chronicle an event on a house-by!
house basis—helpful in quantifying threatened subpopulations (Tpar;)—when communities are
small and sequential than when they are large and dispersed.

Although it is not immediately apparent, a close comparison between Figure 7.1, Figure
7.2, and Appendix C will reveal that negative E-values continue out to -30 minutes and beyond
with no departure from evacuation nonsuccess factor (Ef) = 1.0. There were no historical
examples of Tpar; < Par; when E < -5 minutes. Values of E <-10 minutes reflect expansive,
urban neighborhoods or island communities with little or no warning time. As such, this graph
represents all types of communities, large and small, canyon and plain, when the average
warning time (Wt,y,) is short; and should accurately reflect the pattern of activity within the
final, urgent minutes before the arrival of any catastrophic flood. It fits especially well for those
who live within 1,000 ft of the hillside.

The strong and extended trend line at the evacuation nonsuccess factor (Ef) = 1.0 shows
that it would be unrealistic to expect any evacuation of a homogeneous subPar when E < -6
minutes. However, most people can run far and fast when their life depends on it, so between E =
-4 minutes and E = +4 minutes, Ef drops from about 0.98 to 0.02 in an S-pattern with an
inflection point at Ef = 0.5 and y-intercept at 0.25. There is, of course, wide scatter around this
trend line.

The right tail of the graph can be extended indirectly through events like Buffalo Creek
that provide especially good studies in life loss with incremental increases in E. The subPar can
not be used directly because the values for Tpar; are not known. However, every fatality was a
member of Tpar; and the approximate value of Tpar; can be guessed via the life-loss distributions
presented in Table 7.1 (illustrated graphically later in Figures 7.9 and 7.10). The results are
displayed using new scales in Figure 7.3. The new data points were calculated by distributing life
loss (L) within each subPar proportionately to the number of dwellings at each level of loss of
shelter (Ls) within that subPar, then dividing each subdivision of life loss (L;;) by the appropriate
average proportion of lives lost recorded in the bottom row of Table 7.1. Potential threatened
subpopulations (Tpar;) among houses with Ls = L were neglected since they would have grossly
distorted the results.
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While it might be preferable to display confidence limits, it is gratifying to see that the
general pattern produced is exactly what one would have expected. That is, the new data points
fit well with the original pattern close to zero and they continue to approach zero asymptotically
with time. Note that while most people evacuate within the first 5 — 10 excess minutes, even
when the warning time exceeds the evacuation time by 40 and 55 minutes, there can still be
stragglers that do not evacuate for one reason or another.

Table 7.1. Proportion of lives lost within threatened subpopulations (Ptpar;) with homogeneous
loss of shelter (Ls) when values were available

Homogeneous Loss of Shelter
Ls =H100% Ls =M100% Ls=L100%
1.00 1.00 0.93 0.57 0.88 0.020 10.013 0
1.00 1.00 0.93 0.50 0.80 0.013 ]0.0025 0
1.00 1.00 0.89 0.40 0.56 0 0.0016 0
1.00 1.00 0.86 0.38 0.50 0 0 0
1.00 0.99 0.84 0 0.43 0 0 0
1.00 0.99 0.83 0.43 0 0 0
1.00 0.98 0.80 0.33 0 0 0
1.00 0.98 0.78 0.28 0 0 0
1.00 0.98 0.71 0.13 0 0 0
1.00 0.97 0.66 0.037 0 0
1.00 0.94 0.64 0.036 O
_ B Average =
Average = 0.857 Average = 0.202 0.000914
H=0.857 M/H=0.236 | L/H=0.00107
0.25

E *

\§: 018 e

W .

‘.u] *

0.1 1
0.05 1 o* .
-10 0 10 20 30 40 50 60 70 80

E
¢ Bpar = Pre m Bpar = Post 4 Back-calculated
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Figure 7.3. The evacuation nonsuccess factor (Ef) vs. the excess evacuation time (E), including
points back-calculated from subdivisions of life loss (L;;) and the average life loss for
associated categories of loss of shelter (Ls).
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There are two ways these figures might be used. One way would be to draw a smooth S-
curve through the center of the data points and then to read point estimates off this curve.
Another approach would be to sketch upper and lower bounds around the data points and then to
determine the distribution of the evacuation nonsuccess factor (Ef) within small increments of
excess warning time (E). The distributions can be produced directly using the data points in
Appendix C of Estimating Life Loss. As a general trend, the skewness in this distribution shifts
from positive to negative as E changes from negative to positive values. Any prediction of life
loss that intends to capture real-world dynamics needs to incorporate this intrinsic variability.

Using E and Ret to Define SubPar

The excess evacuation time (E) depends on the value of the representative evacuation
time (Ret) and the average warning time (Wtaye): E = Ret — Wty If E is a useful variable for a
potential life loss model, it follows that Ret is similarly important. Thus, Ret might prove one of
many useful criteria by which Par could be divided into subPar—historically as well as
predictively. Table 7.2 offers one set of criteria by which Ret might be used to designate subPar.
The data in the table is not based on a detailed statistical analysis, but it is based on expert
judgement after the author characterized the events and subPar in the unpublished working
documents.

Reducing Par; to Tpar; (shortcomings
of Wt, Wtae, and Sc)

Warning time (Wt), average warning time (Wt,yg), and sensory clues (Sc) are much less
useful than the excess evacuation time (E) in predicting the evacuation nonsuccess factor (Ef).

Table 7.2. Possible criteria by which changes in Ret; indicate a region should be subdivided into
two or more subPar

When Wt,,, < X and Ret; < 150% of Wt,y,, then when moving across
Ret;, if the smallest Ret; differs from the largest Ret; by 20% of X or
more, a new Par; begins. Use the smallest value of X, below, for
which Wt,,, < X.

X (minutes)

5

10

15

20

50

100

200

Any number > 200
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Figure 7.4 shows a slight reduction in Ef as Wt increases beyond 45 minutes, but Figure
7.5 is essentially trendless when Wt is less than 15 minutes. Figure 7.4, does, however, reinforce
the notion that pre-failure warnings are ineffective. The data point at the extreme upper right
corner represents the communities around Vaiont Lake, discussed above. Overall, when Wt
began prior to failure, less than 80% of the population evacuated in six out of seven cases. The
triangles represent these same seven data points, only Wt is limited to the time subsequent to
failure. Notice that under these constraints, the evacuation rates were in keeping with other
events, suggesting Wt was not taken seriously until the dams actually failed.

The average warning time (Wt,,¢) shows a stronger trend in Figure 7.6 and its
corresponding close-up in Figure 7.7 than did Wt, while sensory clues (Sc) in Figure 7.8 shows
simultaneous trends in opposite directions. Such illogical results are possible because,
fundamentally, any measure of warning that is independent of the required evacuation

Ef = Tpar;/Par;
o o o o o
o o N o ©
o4 g0
[ ]
3

0.4
0.3 ‘{ "
n ]
0.2 1o "
0.1 .
0o T = T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 1800

Wt
‘ + Wt starts post-failure = Wt starts pre-failure 4 Amount of Pre-failure Wt that is post-failure ‘

Figure 7.4 The evacuation nonsuccess factor (Ef) vs. the warning time (Wt) for the full data set.
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Figure 7.5. The evacuation nonsuccess factor (Ef) vs. the warning time (Wt) when Wt is short.
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Figure 7.6. The evacuation nonsuccess factor (Ef) vs. the average individual warning time from
any source (Wtay,) for the full data set.

215



0.9 4

0.8 4

0.7 4 .

0.5 4

Tpar;/Par;

0.4

*

Ef
.

0.3
0.2 | R

011 .

R 24

5 6 7 8 9 10
Wt

o
EE R X 4

avg

‘ + Wt starts post-failure m Wt starts pre-failure ‘

Figure 7.7. The evacuation nonsuccess factor (Ef) vs. the average individual warning time from
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Figure 7.8. The evacuation nonsuccess factor (Ef) vs. the average warning time provided by
sensory clues (Sc) for the full data set.
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time is only half of the puzzle. In and of themselves, warning times mumble when they
try to declare who can and who cannot escape the flood zone.

Applying Loss Functions to
Homogeneous Units Based on Ls

Conceptually, if one could reduce subPar (Par;) to threatened subpopulations (Tpar;), it
would be desirable to be able to predict the extent of the threat each member of Tpar; faced—that
is, their likelihood of perishing. One possible way to distinguish various levels of threat is to
identify flood conditions that define hierarchical zones of life-loss. An early effort to do this
focused on grouping uniform housing damages under one of three levels of loss of shelter (Ls):
Ls =H100%, Ls = M100%, and Ls = L100%. Figures 7.9 — 7.11 present histograms of the
proportion of lives lost for each subPar; that was completely homogeneous

22
20 |
18 :,
161
14
12 :,
10 |

Frequency Histogram

'm0 s mma=@DDl

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Ptpar; for Ls = H100%
(Equal to or Less than the Bin Number)

Figure 7.8. Histogram of the proportion of the threatened subpopulation that perishes (Ptpar;) for
loss of shelter (Ls) = H100%.
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Figure 7.10. Histogram of the proportion of the threatened subpopulation that perishes (Ptpar;)
for loss of shelter (Ls) = M100%.
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Figure 7.11. Histogram of the proportion of the threatened subpopulation that perishes (Ptpar;)
for loss of shelter (Ls) = L100%.
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with respect to a category of loss of shelter (Ls). The underlying values can be found in
Table 7.1 and in Appendix C.

Notice the strong trends when Ls = H and Ls = L. When Ls = H, the most likely value for
the proportion of lives lost among Tpar; (Ptpar;) is 1.0, and the average death rate is 85.7%.
When Ls = L, however, deaths are a rare exception, so one would generally expect zero deaths
and, on average, only 1 out of 1,000 people left stranded in the flood zone would die (see the
averages at the bottom of Table 7.1).

When Ls = M, the flood conditions could approximate Ls = L or Ls = H, depending on
the height of the building and the nature of the damages. Not surprisingly, the proportion of the
threatened population that dies (Ptpar;) ranges across the spectrum when loss of shelter (Ls) falls
between Ls = L and Ls = H. Losses appear to be clumped into three separate distributions. Most
likely, the distribution near zero reflects cases for which upper stories or other safe havens
provide flood conditions most similar to Ls = L. The distribution on the far right reflects tenuous
conditions in which people are more likely to be submerged or swept away than to find adequate
shelter. The distribution in the middle likely represents subPar with a range of major damages,
some very severe and others rather mild, producing a mixed distribution.

Figure 7.12 ignores the frequency of occurrence within each Ptpar; range, but it
demonstrates the diversity of values and the overall spread. The plot is based on the weighted
loss of shelter (Lsw), which is a weighted, linear combination of Ls-values for which the average
Ptpar; when Ls = H is the reference. The equation is shown at the bottom of the graph and it is
explained in Chapter V. The importance of the graph is that life loss falls within the expected
ranges for subPar with a mixture of Ls values: it increases as the weighted loss of shelter (Lsw)
approaches loss of shelter (Ls) = H.

Refining Loss Functions
with Predictive Variables

While these Ptpar; distributions are satisfying, the wide range of possible values in
Figures 7.9, 7.10, and 7.12 suggest that loss of shelter, alone, does not describe all of the
variability in life loss. Does it make sense that life loss can range between 0% and 100% when
loss of shelter (Ls) = H? Does Figure 7.10 represent three distributions or only one?

To try to narrow the range of each distribution that might apply in a given context, Ptpar;
was graphed against a number of possible predictive variables with the data points broken out
separately for each category of loss of shelter (Ls) = X100%. The most likely candidates for
predictors were various approaches to depth and velocity.
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Figure 7.12.  Scatter plot of the proportion of the threatened population that dies (Ptpar;) vs. the
weighted loss of shelter (Lsw).

Figure 7.13 shows the proportion of the threatened population that dies (Ptpar;) vs. the
maximum depth (D), with Ptpar; broken out by categories of loss of shelter (Ls). Figure 7.14
duplicates this graph when D < 30 ft. It is important to remember that D is a maximum value and
not necessarily representative of a subPar as a whole. However, together, these figures suggest
several valuable insights.

When D > 100 ft, one can reasonably expect Ls = H100% and Ptpar; will fall within that
range of the Ls = 100% distribution for which Ptpar; > 0.94. This roughly corresponds with the
upper 40™ percentile of the Ptpar; distribution.

Although the graph implies that when D < 3 ft one would expect only minor damages,
this is not necessarily the case. For example, with D = 3 ft, velocities were sufficiently high
across the Aras Alluvial Fan that had it been a neighborhood instead of a campground, damage
would most likely have been major. The roads were washed away in places and erosion was
pronounced. At 4 ft, the flood through Eldorado Canyon caused residential trailers to float and
move into deeper water where they were destroyed. Ptpar; = 0.57 instead of 1.0 for this data
point because three people were able to reach shore before the trailers were swept away. At 6 ft
of depth, frame houses below Lee Lake Dam were destroyed, killing those who could not
evacuate.
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Figure 7.13.  The proportion of the threatened subpopulation that perishes (Ptpar;) vs. the peak
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Taking each category of loss of shelter (Ls) in isolation, there are no clear trends when
depth (D) < 30 ft that would allow one to focus on one part of a distribution of the proportion of
the threatened population that dies (Ptpar;) over another. More severe damage can be expected as
D increases, but the graph does not provide a reliable distribution for prediction since damages
are highly dependent on velocities. However, when D > 20 ft, Ls = H100% unless buildings are
very tall and sturdy (such as some commercial structures) or some buildings are in water less
than 20 ft deep.

Figure 7.15 is almost identical to Figure 7.14, except that the variable Wwr is used in
place of depth. Wwr represents the height of a wall of water (Ww) or the comparable height of a
fast-rising flood, taken as 0.8*D when the maximum rise rate (R) =V, 0.3*D when R =H, and 1
ft when R = L. These weightings are subjective, but they seek to capture the depths that are most
likely to impact people if they are caught while evacuating. Since most events in the data set had
walls of water, and since these walls were usually equivalent in height to the peak flood depth
(D), little new information is provided. However, note that key data points for Ls = H100% and
Ls = M100% are shifted toward smaller values, reinforcing the point made earlier that floods less
than 4 ft in depth can still cause considerable damage and life loss if velocities are high.
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Figure 7.15. The proportion of the threatened subpopulation that perishes (Ptpar;) vs. the
height of a wall of water or the equivalent height of a rising flood (Wwr).
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Figure 7.16 indicates the relationship between the proportion of the threatened population
that dies (Ptpar;) and peak velocity (V). As is true for depth (D), V is not necessarily
representative of Par; as a whole. When Ls = H100% or L100%, no apparent trends exist that
would allow one to refine the Ptpar; distributions in Figures 7.9 and 7.11. It is possible to
postulate that when V < 10 fps among buildings, Ptpar; will not exceed 0.15, but this should be
verified through additional research and one would not expect this to hold true if buildings were
submerged.

Theoretically maximum depth (D) and peak velocity (V) should have greater predictive
potential when their separate influences are combined. Figures 7.17 and 7.18 explore this for the
product of V*D, which, again, is not necessarily representative of Par; as a whole. One can be
reasonably confident that when D*V > 600 ft*/s, a relatively homogeneous, residential subPar
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Figure 7.16.  The proportion of the threatened subpopulation that perishes (Ptpar;) vs. the peak
velocity (V).

223



A
o
o
r3 iﬁ
®
*
L
>
<

*
0.80 3
0.70
0.60 -

0.50

Ptpar;

0.40

]
0.30 +
0.20 +

0.10 A

000 ’& T T T T T T
0 5000 10000 15000 20000 25000 30000 35000

D*V (ftYIs)

[+ Ls=H100% = Ls=M100% Ls=L100%

Figure 7.17.  The proportion of the threatened subpopulation that perishes (Ptpar;) vs. the
product of peak depth and peak velocity (D*V).

od * * * * *>

1.00 . P 3d
-
0.90 -

s 4

*

* o

*

0.80 - s
0.70 -

0.60

0.50 + . L]

Ptpar;

0.40 ~

0.30 ~

0.20

0.10

000 o .7 - 4.7—.7 T T T T
0 200 400 600 800 1000 1200

D*V (ft¥/s)

[+ Ls =H100% ® Ls =M100% Ls=L100%|

Figure 7.18. The proportion of the threatened subpopulation that perishes (Ptpar;) vs. the
product of peak depth and peak velocity (D*V) when D*V < 1,200.

224



will have Ls = H100% and Ptpar; > 0.8. Above D*V = 2,500 ft*/s, one would generally expect
Ptpar; > 0.94. At the other extreme, when D*V < 40 ft*/s, one would most often expect Ptpar; <
0.15, but this can be violated as suggested by a Ptpar; value of 1.0 when D*V = 50 ft*/s. In
between these extremes, D*V offers little help in distinguishing levels of damage or life loss.
That is not to say that it is impossible to predict levels of damage in this range, but only that the
point values peak depth (D) and peak velocity (V) offer little help without knowing what D and
V are at each structure and the relative durability of the structures involved (whether structures
are mobile homes, unbolted frame houses, bolted frame houses, brick houses, commercial
structures, etc.).

The destructive velocity (Dv) seeks to represent an entire reach more uniformly than
D*V since it relies on W and the peak volumetric flow rate (Qp). However, there is still the
dilemma that Dv does not represent the fringes of a flood zone well or those segments of a reach
wider or more narrow than W. For the most part, only the maximum width was available, so
Figures 7.19 and 7.20 display only Dy, (Dv is minimized when W is maximized). There are no
apparent trends when Dv is small, but Ls = H appears to stop about Dv = 600 ft*/s and Ls = M
appears to stop about Dv = 1,000 ft*/s in homogeneous, residential communities. Researchers
would want to confirm this with additional data points, however. Beyond Dv = 1,000 ft*/s, one
would also expect Ptpar; to fall above 0.95.

Figure 7.21 explores the impact that day and night have on Ptpar;. The data are
inconclusive. Because time of day (Td) usually remains the same for every subPar associated
with a given event, there is great potential to detect false trends. In particular, the Dale Dyke
Dam failure occurred at night, as do many lethal flood events, so there are more subPar with Td
= N than with Td = H or S. It should be noted, however, that Td is already incorporated into the
model in that it profoundly affects excess evacuation time (E) by shortening the average warning
time (Wtag) and lengthening the representative evacuation time (Ret). Once people are trapped
in a flood, the effects of Td should be less pronounced.

In the same way, the general preparedness of people to evacuate prior to failure should
influence the value of E through both Wt,,, and Ret, but it should have little bearing on life loss
after the flood arrives. Figure 7.22 demonstrates no clear trend except that preparedness (Pr)
tends to be low among events with life loss.
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