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EXECUTIVE SUMMARY 

A waterway simulation model has been developed to 
estimate tow delays at series of locks. This model can also 
estimate tot., travel time along waterways, the means and 
variances of interarrival and interdeparture times at each 
lock, and the coal inventory levels and expected stock-out 
amounts. This is a stochasti c, microscopic and event-
scanning model. Each simulation run takes from several 
seconds to several minutes on a PS/2 personal --ompute., 
depending on system complexity. 

This model can handle any distributions for trip 
generation, lock service times and tow sizes. These 
distributions can be specified with tables to best represent 
r--ality or with equations to represent standard statistical 
distributions. Currently, travel speeds are assumed to be 
normally distributed while general distributions based on 
empirical observations are used for trip generation, lock 
service times and tow sizes. The service discipline in this 
model is FIFO. The model caa accommodate parallel servers 
with unequal service rates. In addition, it can evaluate 
stall effects explicitly. 

Validation results show that the model works 
satisfactorily. To check the logic of this model, it is 
compared against the well established M/G/I queues over a 
wide range of volume to capacity ratios (0.04 to 0.89). The 
average absolute error is 0.54%. This simulation results 
are also compared with the observed data at five lock sites 
on the Mississippi River. The validation criteria include 
average waiting times, chamber volumes, and cut volumes. 
The validation results show that the simulation model 
represents the real system quite well. 

Although this simulation model requires only a few 
seconds to a few minutes for each lock and each run on a 
PS/2 personal computer, that is still hardly affordable for 
direct application in large combinatorial network investment 
problems. 

A numerical method has been developed for estimating 
delays through a series of G/G/I queues with inflows and 
outflows occurring only at end nodes. This numerical method 
is an approximation of the simulation model. It can quickly 
evaluate large combinatorial investment problems and thuis 
helps identify the best combinations of investment 
alternatives for further analysis (e.g., by simulation). 

This numerical method was originally developed for 
systems with bi-directional servers. With a few 
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simplifications, this method can be adapted for the m-re 
generally e....antered systems with one-directional servers. 
The two-way algorithm employs an iterative alternating 
direction scanning procedure to estimate the interarrival 
and interdeparture time distributions lock by lock until the 
interdeparture time variances fur successive iterations 
converge. The performance of this two-way algorithm is 
tested with satisfactory results. The one-way algorithm 
only scans the interarrival time and interCeparture time 
distributions from the first- to the last lock without any 
iteration and should, theoretically, be less subject to 
interdependence errors. 

Both the two-way and one-way algorithms rely on several 
metamodels estimated from the results of a previously 
developed simulation model These metamodels provide the 
following valuable results for series of G/G/± queues. 

1. The delay metamodel (Eq. 41) indicates how the V/C 
ratios. interarrival time distributions, 
inteidep•rture time distributions and service 
distributions affect the average waiting times for 
GIG/i queues. This delay function is an exact 
solution based on Marshall's formula for the 
variance of interdeparture times. 

2. The relations among the coefficients of variation 
of interdepartuie times, interarrival tires, 
service times, and the V/C ratio are formulated in 
the departures metamodel. The structure of the 
departure function (Eq. 36) is based on functions 
for the squared coefficients of variation of 
interdeparture times. By applying Laplace 
transforms, these functions (i.e., Eqs. 31 and 32) 
are derived theoretically in this study. 
Statistical estimation of the parameters yields a 
very good fit. The function's standard error of 
0.0058 is extremely tight compared to its mean of 
0.8311. The parameters also have very tight 
standard errors. In addition, this departure 
function is consistent with Burke's Theorem. The 
results show that the metamodeling approach 
combining queuing theory and statistical 
estimation based on simulation outputs is quite 
successful. This approach for approximating 
departure processes snould be very useful for 
analyzing networks of queues. 

3. The arrivals module provides the relation between 
the variance of interarrival times and the 
variance of interdeparture times from the adjacent 
queue stations when speed variations change the 
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headway distributions between successive queue 
stations. 

It should be noted that the metamodel parameters have 
been estimated from data bases representing conditior- on 
waterways. However, results to date indicate that such good 
metamodels can be extended to other applications. 

The applications of the numerical method are currently 
limited to series of G/G/I queues in waterways with inflows 
and outflows occurring at end nodes. The following 
extensions are desirable to increase its applicability. 

1. 	 A function should be developed to estimate the 
variance of interarrival times when inflows and 
outflows occur between queuing stations. Such an 
arrival function should reflect the complex 
superposition and splitting of flows in general 
networks of queues, including tree and grid 
networks. A proposed approach would compute the 
variance of overall arrival rates as the sum of 
the arrival rate variances from all inflows, 
assuming individual inflows are independent of 
each other, and then develop the relation between 
the variance of interarrival times and the 
variance of arrival rates. 

2. 	 The effects of random failures (i.e., stalls) 
might be incorporated by treating stalls as a 
second class of users with its own arrival and 
service time distributions. The present method 
can already incorporate stalls as part of the 
exogenously specified service time distribution, 
to the extent that stalls are related to traffic 
volumes. However, it is desirable to have a 
method which can evaluate stall effects 
explicitly. 

3. 	 If possible, the numerical method should be 
extended to locks with two or more dissimilar 
chambers. This is rather difficult for chambers 
with different characteristics, because the 
chamber assignment process affects lock capacity. 

4. 	 The ability to handle unequal directional trip 
rates would be desirable for many applications, 
although waterways usually operate with roughly 
equal directional flows. 

5. 	 It would be desirable to model queues with limited 
storage space, which are highly unusual on 
waterways but fairly common in dense road 
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networks, computers, and other queuing network 
applications. 

Additional statistical and computational tests are also 
desirable to further validate this method and to extend its 
applicability. 

The approach developed in the numerical method may be 
applied not only to a lock queuing system, but also to some 
other systems of queues. More comprehensive simulation 
experiments are desirable for developing the arrival and 
departure process modules for networks of G/G/k queues. 
These simulation experiments may include wider ranges of 
variables, and other special distributions for interarrival 
and service time distributions. Further research in 
estimating interarrival time distributions with multiple
unequal inflows would be necessary for extending the 
numerical method to general networks of queues which may 
have inflows and outflows at any node. 

The final methodology for estimating waterway delays 
may combine simulation and numerical method. The numerical 
method may be used in analyzing large combinatorial 
problems, that may be encountered in investment scheduling 
or real time traffic control. The numerical method may be 
used to screen alternatives so that only a few of the most 
promising ones are examined more thoroughly with the 
simulation model. Guidelines should be developed for 
switching between the numerical method and simulation in 
applications requiring intermediate accuracy. 

The feasibility of approximating simulation models for 
complex queuing systems with simple metamodels should be 
intensively explored. If feasible, it would have important 
applications in combinatorial optimization and real-time 
control for transportation and communication networks, 
computers, and manufacturing systems. 

xii 



CHAPTER 1
 
INTRODUCTION
 

Background 

Inland waterway transportation is quite important in 
the U.S. and other countries, especially for heavy or bulky 
commodities, since it is inexpensive, energy efficient, and 
safe. Most U.S. waterways consist of stepped navigable 
pools formed by dams across natural rivers. The lock 
structures used to raise or lower vessels between adjacent 
pools constitute the major bottlenecks in the U.S. waterway 
network [27] and generate extensive queues. The resulting 
delays and variability of service times have very 
substantial economic implications. 

Some locks have only one chamber, while others may have 
two parallel chambers whose characteristics may differ. The 
most common chamber sizes are 110' x 1200' (i.e., 110 feet 
wide and 1200 feet long) and 110' x 600'. Each chamber size 
can accommodate a limited number of barges at one time. For 
example, a 110' x 1200' chamber can accommodate at most 17 
standard barges plus a towboat, while a 110' x 600' chamber 
can accommodate at most 8 standard barges plus a towboat. 
If a tow has more barges than the chamber can accommodate, 
it must be disassembled into several pieces (called "cuts") 
to move through the chamber and must later be reassembled. 
Therefore, the service time distributions depend on chamber-
size and tow-size distributions. Sometimes, chambers will 
be out of service (i.e., "stalled") for various reasons such 
as freezing, accidents, and mechanical failures. 

Figure 1 shows a simple diagram of a lock queuing 
system. Locks are the servers and tows are customers 
waiting to be served by locks. In the lock queuing system, 
tows from both directions, upstream and downstream, share 
the same lock servers, while in most other queuing systems 
the servers are exclusively one-directional. In this work, 
the term "two-way traffic operations" characterizes the lock 
queuing system while "one-way traffic operations" 
characterizes queuing systems in which servers are 
exclusively one-directional. 

Arrival-time and service-time distributions at locks 
are fairly complex. Carroll [5] and Desai [14] found that 
service times are not exponentially distributed, and 
arrivals are not Poisson distributed. Other standard 
distributions have been tested for the present study,
without consistent success. Locks with a single chamber may 
be modeled as G/G/l queuing systems. (The notation means 
"generally distributed arrivals/ generally distributed 
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FIGURE 1. LOCK QUEUING SYSTEM 

2
 



service times/ one server".) However, locks with two 
parallel chambers may not be treated simply as G/G/2 queuing 
systems unless the parallel chambers are identical. 

The lock service-time distributions 4re affected by the 
chamber assignment discipline at locks with two dissimilar 
chambers. There the "main" chamber is larger than the 
"auxiliary" chamber and can accommodate without disassembly 
large tows that might require several cuts and far larger 
service times to move through the auxiliary chamber. 
However, if the same number of cuts is required through 
either chamber, a shorter auxiliary chamber may provide 
faster service since entry and exit times may be reduced. 
Therefore, lock service-time distributions are dynamic and 
depend on the chamber assignment discipline. 

Considerable interdependence may exist among locks in a 
series. The departure distributions differ from the arrival 
distributions since the service-time distributions change 
the tow headways. The departures from one lock usually 
affect the arrivals at the next lock. Therefore, it is 
improper to assume that the locks are independent. The 
interdependence among locks increases the difficulty in 
estimating delays for the lock queuing system since it is 
necessary at each lock to identify the interarrival-time 
distributions of flows from adjacent locks. 

Two-way traffic operation through common servers 
complicates the interdependence of lock delays and precludes 
the use of some otherwise interesting queuing models. 
Delays are determined by the arrival distributions and 
service-time distributions. It is much more difficult to 
identify the arrival distributions for two-way traffic 
systems than for one-way traffic systems. The arrival 
distribution at one lock is affected by departures from both 
upstream and downstream locks, while departures from this 
lock also affect the arrivals at upstream and downstream 

or example, Figure atlocks. -- in 1 the arrivals Lock 2 
would be affected by the departures from Locks 1 and 3. The 
departures from Locks 1 and 3 toward Lock 2 are highly 
correlated with the arrivals at 1 and 3 from 2. Some of the 
arrivals at 1 and 3 represent departures from 2. Hence, the 
arrival distributions of these three locks are 
interdependent. Thus, two-way traffic operation complicates 
the estimation of the two arrival distributions at each 
lock. The arrival distributions depend not only on the 
departure distributions from the adjacent locks, but also on 
speed variations and distances between adjacent locks. 

Random failures, which in inland waterways are called 
stalls, contribute significantly to the difficulties in 
estimating delays. Stalls, which interrupt lock operations 
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and thereby increase delays and service time variances, are 
relatively rare compared to other events, however their 
occurrence is very difficult to predict. 

Problem Statement 

A reliable and efficient method for estimating delays 
is essential for evaluating and scheduling waterway 
investments. When many investment proposals are considered, 
their selection and scheduling becomes a large combinatorial 
problem, since waterway investments are often 
interdependent. 

The purpose of this research is to develop an efficient 
and reliable method to estimate delays through a series of 
waterway locks. The difficulties in estimating delays for 
such a lock queuing system are summarized as follows: 

1. 	 Arrival-time and service-time distributions are 
generally distributed (i.e., they cannot be 
represented by any standard statistical 
distribution). 

2. 	 The service rates of parallel chambers may be very 
different. 

3. 	 Service-time distributions are affected by the 
chamber assignment discipline. 

4 	 Considerable interdependence exists among locks in 
series. 

5. 	 Two-way traffic operation through bi-directional 
chambers complicates the analysis. 

6. 	 The arrival distributions depend not only on the 
departures from previous locks but also on the 
distances and speed distributions between locks. 

7. 	 Stalls increase tne means and variances of delays. 

Even neglecting the special complexities associated 
with waterways, the available analytic sclutions for 
estimating delays through a series of G/G/i queues are quite 
inadequate. These analytic solutions are approximations or 
are subject to some limitations. They will be discussed in 
greater detail in the literature review. 

Scope 

This research seeks to estimate delays along a series 
of locks in waterways. The arriva&; ,nd service times at 
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these locks are generally distributed. Some locks may have 
two parallel unequal chambers. All chambers must handle 
upstream and downstream traffic. Also, these locks are 
subject to interruptions of operation due to stalls. 

This research also seeks to explore the feasibility of 
substituting single equations for simulations of complex 
systems of queues. If feasible, such substitutes for 
simulation would have important applications in 
combinatorial optimization and real-time control for various 
transportation and communication networks, computers, and 
manufacturing systems. 

5
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CHAPTER 2
 
LITERATURE REVIEW
 

The literature reviewed in this study concentrates on 
lock delay models, lock interdependence, waterway simulation 
models, single queues, and networks of queues which are the 
subjects of greatest relevance to this work. Of these, the 
work on waterway simulation models and on networks of queues 
represent the closest parallels to the models developed for 
this study. 

Lock Delay Models 

Two models based on the application of queuing theory 
have been found for estimating lock delays. DeSalvo and 
Lave [13] represent the lock operation as a simple single-
server queuing process with Poisson distributed arrivals and 
exponentially distributed service times. Wilson [37] 
extends the previous model by treating the service processes 
as general distributions. Both models are designed for 
analyzing single-lock delays. 

Lave and DeSalvo [13] proposed that approximate lock 
delays could be estimated with an M/M/1 queuing model 
(Poisson arrivals/Exponential service times/i server). 
Unfortunately, their assumptions about the arrival and 
service-time distributions do not satisfactorily fit the 
physical system of locks cn waterways. In particular, 
Carroll and Wilson [71 found that the exponentially 
distributed service times do not correspond well with 
empirical evidence. Therefore, it is not proper to assume 
that the service times are exponentially distributed. 

The assumption of Poisson distributed arrivals does not 
fit every lock in the waterway system. Carroll and Desai 
[5,14] studied the arrival processes for 40 locks on the 
Illinois, Mississippi, and Ohio River systems, utilizing 
1968 data. The results of Chi-square tests show that 13 out 
of 40 locks had non-Poisson arrivals at the 5% significance 
level. Therefore, the assumption of Poisson distributed 
arrivals is questionable. 

Wilson [37] proposed an M/G/1 model (Poisson 
arrivals/general service times/i server) to analyze lock 
delays. Unlike DeSalvo and Lave [13], Wilson represented
the service processes as generally distributed rather than 
exponentially distributed, which is far more realistic [7]. 
However, even the Poisson arrivals assumption is not 
realistic for all locks. Another deficiency in Wilson's 
model is that no exact queuing results are available for 
locks with two chambers in parallel. Thus, Wilson's model 
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can only be applied to locks with Poisson distributed 
arrivals and a single chamber. 

Two other deficiencies exist in both of the above 

models. First, neither of these models accounts for stalls. 
Stalls cause service interruptions at locks, thus reducing 
lock capacities or increasing delays. Their occurrence is 
very difficult to predict. Thus, Kelejian's efforts to 
model stalls and stall durations have not yet yielded strong 
results despite the rigorous statistical methods employed 
[19]. The second deficiency is that both models were 

a
developed to analyze delays at single lock. Since the 
delays at adjacent locks may be highly related, it is 
desirable to analyze lock delays for entire systems. 

Based on the above discussion, it seems desirable to 
develop a model that can represent the physical conditions 
satisfactorily and analyze systems of locks. The physical 
conditions that should be represented include generally 
distributed arrivals and service times, and service 
interruptions due to stalls. 

Lock Interdependence 

The departure process of a queue in a network is of 
special interest because it is likely to determine the 
arrival process at the following queue in the network. This 
produces interdependence among system elements. In other 
words, lock interdependence can be expressed in terms of the 
relations among the arrival, service, and departure 
processes at one lock. If the distributions of tow arrivals 
and departures at one lock are identical, it can be shown 
[i11 that this lock is independent of other locks. 

Burke's theorem [111 states that the steady-state 
output of a stable M/M/m queue with input parameter X and 
service time parameter A for each of the m channels is in 
fact a Poisson process with the same rate X. Therefore, for 
two locks in series, if the arrival process is Poisson 
distributed and the service process is exponentially 
distributed at the first lock, the second lock will be 
independent of the first lock. In addition, the second lock 
will have the same arrival distribution as the first lock. 

Burke's theorem established that an M/M/m queue is 
independent of the other processes in a network of queues. 
Hence, the decomposition technique can be applied to analyze 
the delays of this network (if all queues in it are M/M/m). 
While this is a powerful result, the delays at inland 
waterway locks cannot be analyzed independently since the 
service processes are observed to be non-exponentially 
distributed [7]. 
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Carroll and Desai [5,141 studied tow arrival processes 
at locks on the inland waterway system. They assumed that, 
if the tow arrivals at a lock follow a Poisson distribution, 
the queuing processes at this lock are independent of what 
has occurred at the preceding lock. They employed a 
waterway-system simulation model to analyze operations 
through a series of locks. The goodress-of-fit of the tow 
interarrival distributions to a negative exponential 
distribution was then tested at all locks, using the Chi-
Square test. The results showed that 13 of 40 locks had 
non-Poisson arrivals at the 5% significance level. Hence, 
Poisson distributed arrivals may not be assumed for the 
inland waterway system. 

Waterway Simulation Models 

The system simulation models developed to analyze lock 
delays and tow travel times originated mainly from Howe's 
microscopic model [17]. In that model service times were 
based on empirically-determined frequency distributions. To 
avoid some troublesome problems and errors associated with 
the requirement to balance long-run flows in Howe's model, 
Carroll and Bronzini [6] developed another waterway-system 
simulation model. It provided detailed outputs on such 
variables as tow traffic volumes, delays, processing times, 
transit times, averages and standard deviations of delay and 
transit times, queue lengths, and lock utilization ratios. 

Both of the above models simulate waterway operations 
in detail but require considerable amounts of data and 
computer time, which limit their applicability for problems 
with large networks and numerous combinations of improvement 
alternatives. Both models assume Poisson distributions for 
tow-trip generation, which is not always realistic. More 
importantly for reliability analyses, neither of these 
models explicitly accounts for stalls, which are very 
different in frequency and duration from other events and 
have significant effects on overall transit-time 
reliability. 

Hence a waterway simulation model that explicitly 
accounts for stalls is desirable for evaluating and 
scheduling lock improvement projects. 

Single Queues 

Queuing theory deals with the stochastic behavior of 
service systems. Historically, queuing theory was first 
developed in the context of telephone traffic. Erlang, in 
particular, made many important contributions to the subject 
in the early part of this century. Telephone traffic 
remained one of the principal applications until about 1950. 
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Recently, queuing theory has been applied to many other 
fields including communications, computer networks, 
transportation, and manufacturing. 

Elementary queuing theory is based on pure Markov 
queues. In a Markov process, the state of the queuing 
system at any time depends only on the -urrent state and not 
on any previous states. A very import-ant special class of 
Markov processes is the birth-death process in which state 
transitions take place between neighboring states only. The 
application of the birth-death process has helped in 
developing exact equilibrium solutions for queues with 
Poisson distributed arrival processes and exponentially 
distributed service times. 

G/M/1 or M/G/l queues are non-Markovian stochastic 
processes that may be analyzed with one of the following 
four approaches. First, the method of imbedded Markov 
chains focuses on the number of customers present in a 
queuing system immediately following a departure [21]. 
Second, the method of stages, proposed by Erlang, has the 
disadvantage that it merely gives a procedure to find the 
solution but does not show the solution as an explicit 
expression [21]. Third, G/G/i systems are solved using 
Lindley's integral equation. Therefore, this approach can 
be applied to the special cases of G/M/l or M/G/i [211. 
Fourth, the method of supplementary variables uses the state 
vector [N(t),X 0 (t)] where N(t) is the number of customers in 
the system at time t and X0 (t) is the service time already 
experienced by the customer served at time t [21]. 

G/G/l queues are difficult cases in queuing theory and 
the available techniques for handling them arc incomplete. 
As mentioned above, Lindley's integral ealation is 
applicable for GIG/I systems. The waiting-time distribution 
for customers W(y) in the system G/G/i can be written as 

W(y)= f{ W(y-x)dC(x) if y Ž( 0 

= 3 if y < 0 
where 

y = waiting time 
x = the difference between the service time for one 

customer and the interarrival time between this 
customer and the next. 

C(x) = the probability distribution function (PDF) of u 

In addition, the mean waiting time is 

2 + . 2 + E[tA]2 - p)2 E[I2 
SEp(2) 2 E[tA] (1-p) 2E[I] 

10
 



where 

VA: variance of the interarrival times
US2: variance of service times 

tA: interarrival time 
p: volume to capacity ratio 
I = idle period 

Unfortunately, it is very difficult to solve the two moments 
(E[1 2] and E[I]) of the idle period since this period 
depends on the particular way in which the previous busy 
period terminated. 

Solving G/G/m queues is even more difficult than 
solving G/G/I queues. The methods of approximations and 
bounds have been proposed to solve G/G/m queues [28,291. 
These are accuirate and efficient under heavy-traffic 
conditions. 

Bertsimas [4] proposed a methodology for analyzing the 
waiting times of G/G/m queues with First-In-First-Out (FIFO) 
service discipline and mixed generalized Erlang distributed 
arrivals and service times. This method could be applied to 
more realistic situations than Poisson arrivals and 
exponential service times. However, without a departure 
function, thiis result is difficult to extend to a series of 
locks. 

When traffic is heavy, and thus the ratio p approaches 
1, the average waiting time for G/G/i queues can be written 
as 

2W(A + U' 2 )2(1 - p)E[tA] 

There are two types of approximation methods for G/G/m 
queues [28,29]. First, the fluid approximation uses the 
mean values to represent the stochastic processes. Second, 
the diffusion approximation improves the fluid approximation 
by describing the processes with means given by the fluid 
approximation but with a normal distribution describing the 
fluctuations about that mean. The important assumption 
behind these two approximation methods is that the queue 
never empties, which is consistent with the heavy traffic 
assumption. 

Wolff [38] compared the delays under different orders 
of service (service disciplines) and concluded that the 
order of service would not change the mean of waiting times, 
but the service discipline Last-In-First-Out (LIFO) has a 
larger variance than the First-In-First-Out (7IFO) 
discipline. 
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Networks of Queues 

Modeling networks of queues is very useful for 
analyzing the performance of complex systems, such as 
communication, compute;, transportation, and manufacturing 
networks. Exact solutions are only available for the 
Markovian networks of queues [2] . For more realistic 
networks of queues whose arrivals are not Poisson and whose 
service times are not exponential, approximation methods are 
usually employed for system performance analysis. 

In a Markovian network of queues, ali arrival processes 
in the network are Poisson distributed and all service times 
are exponentially distributed. The queue-length 
distribution of individual queues in the Markovian networks 
is the same as that of a queue with Poisson arrival and 
departure processes [2]. In addition, the joint queue 
length distribution is the product ot the •ndividual queue-
length distributions [3,8,9,16,18,23]. That is, the joint 
queue-length distribution has the product form. Therefore, 
the decomposition technique can be applied to the Markovian 
networks of queues and each individual queue is analyzed 
independently. 

The concept of decomposition can also be applied to 
more general (non-Markovian and one-way) networks of queues. 
The general networks of queues Are decomposed approximately 
into individual queues. These individual queues are 
analyzed independently and then the results are recombined 
for evaluating an entire system. The Queuing Network 
Analyzer (QNA) [35], based on decomposition, is the one most 
relevant to this study. The decomposition technique is 
applied in other examples [10,22,30,311. 

QNA is a comprehensive software package for 
approximating the congestion measure . o)f open networks of 
queues with multiple servers. The service discipline in QNA 
is FIFO and the network capacity is unlimited. The most 
important feature of QNA is that the arrivals need not be 
Poisson discributed and the servi ce times need not be 
exponentially distributed. QNA employs two parameters, 
namely the mean and the coefficient of variation, to 
approximately characterize the arrival processes and then 
analyzes the individual queuing nodes independently. The 
decomposition procedures in QNA include three scages of 
analyses: superposition of arrival streams, departure 
processes, and splitting of departure streams. The 
superposition of arrival processes in QNA is a variation of 
the hybrid method in Albin [1] . The departure proce(sses in 
QNA are identified by the stationary-interval method [351. 
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To approximate the superposition of arrival processes, 
Albin [1] and Whitt [34] suggested the use of the hybrid 
method, which is a combination of the stationary-interval 
method and asymptotic method. The hybrid method is mainly 
used for estimating the coefficient of variation. The 
hybrid coefficient of variation of intervals between two 
consecutive arrivals, Ch 2 , is a convex combination of the 
squared coefficients of variation obtained from the 
stationary-interval method and asymptotic method: 

Ch 2 2 	 2 = WC 1 + (1-w)C 2	 (4) 

where 

C1
2 : squared coefficient of variation obtained from the 

method [341
2 asymptoticC2 	 squared coefficient of variation obtained from the 

stationary-interval method [34] 
w: 	 weighting function, 0 s w ! 1, w = w(p, n*) 
p: 	 volume to capacity ratio of the queue 
n : effective number of component processes
 
n*: [(X12 + ... + Xn2)/ 2]­

Xi: 	 the rate of the ith component process 
X: 	 X = Xi + ... + Xn 

Albin [11 proposed that the weighting function should 
approach 1 as p approaches 1 and approach 0 as n* approaches 
infinity. Based on such a conjecture, Albin created a list 
of candidate weighting functions and used simulation to 
identify the best one. Thus, the weighting function was 
developed empirically. She also developed a different 
weighting function for each operating characteristic to be 
approximated. For example, she suggested using w=[1+6(l­
p)_ 2 n*]l-for approximating the expected number in the 
system; w=[l+8.3(1lp) 2 ln*l 1 for approximating the standard 
deviation of the number in the system; and w=0 for 
approximating the probability of delay. 

It should be noted that Albin's study [11 mainly 
estimated the coefficient of variation for the superposed 
arrival processes to queues. The weighting function in her 
study is a function of the congestion level (p) and varies 
for evaluating different operating characteristics (the 
expected number in the system, the standard deviation of the 
number in system, and the probability of delay). However, 
theoretically, for a single queuing station, the coefficient 
of variation of the superposed arrival processes should be 
independent of the operating characteristics of queues. 
Thus, the coefficient of variation should not be affected by 
p and should not vary for different evaluation purposes. 
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To understand why p is influential in Albin's weighting 
function we need to know how she obtained the results. In 
fact, the weighting function in Albin's study was not 
developed directly based on the coefficient of variation but 
based on the approximating operating characteristics [1]. 
She obtained a weighting function that can produce close 
agreement with the approximating operating characteristics. 
Therefore, her results may be affected by the approximating 
operating characteristics and not represent the true 
coefficient of variation. Since the superposition arrival 
processes in QNA is a variation of Albin's hybrid method, 
QNA also has the deficiency described above. 

Departure processes are very important for networks of 
queues since they often become the inputs for other queues. 
Whitt [36] tried four methods, the asymptotic method, the 
stationary-interval method, the lag-i correlation, and 
hybrid method, for approximating the departure processes by 
characterizing two parameters or the first two moments. 

The asymptotic method tries to approximate the 
parameters of departure processes by matching their long-run 
behavior. The departure process approximated by the 
asymptotic method is just the arrival process. Therefore, 
the result obtained by the asymptotic method may not be 
useful for capturing the interdependence between queues. 

The potential drawback of the stationary-interval 
method is that it does not take account of the dependence 
among successive intervals. Whitt [36], based on Marshall's 
expression for variances of departure processes [26], 
characterized the coefficient of variation of departures in 
terms of the waiting time as follows: 

CD2 CA2 + 2p 2 Cs 2 - 2X(l-p)W (5) 

where 

CD2 : squared coefficient of variation of interdeparture 
times 

CA : squared coefficient of variation of interarrival 
times 

Cs : squared coefficient of variation of service times 
p: volume to capacity ratio 
X: average arrival rate 
W: average waiting time 

However, the exact average waiting time for G/G/1 queues is 
not available. Kraemer and Langenbach-Belz [35] developed 
the following approximation formula: 

W = P(CA2 + Cs 2 )g/2i(l - p) (6) 
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where 

p: the average service rate
 
g g(p,CA2 ,Cs 2 )
 

g(p,CA2 ,Cs 2 ) exp[-2(l-p)(I-CA2 ) 2 /3p (CA 2 + CS 2 )], cA2 < 1 

CA2 11
1, 

Whitt [36] combines the above approximation while g is 
assumed to be one. The expression of CD2 is as follows: 

CD2 = p cS + (1 - p 2 )CA 2 (7) 

Therefore, the coefficient of variation obtained with the 
stationary-interval method by Whitt is based on two 
successive approximations and may generate errors when CA2 

is less than 1, which is very common in waterway queuing 
networks. 

The lag-I correlation provides a compromise between the 
stationary-interval method and the asymptotic method. It 
tries to match the local behavior of a departure process and 
also to partially account for the dependence among 
successive intervals. However, Whitt's results did not show 
any improvement when the lag-i correlation method was used. 

The hybrid method for the departure process is also a 
convex combination of the parameters from the asymptotic 
method and the stationary-interval method. However, this 
approach shows no improvement either compared to the 
stationary-interval method [36]. 

Whitt [36] concluded that the stationary-interval 
method has the best performance among these four methods. 
Therefore, the departure process in QNA uses the stationary-
interval approach. However, Whitt's approach [36] 
approximates the departure process twice and may generate 
significant error when CA2 is less than one. Therefore, it 
is desirable to develop a method to approximate the 
departure process more precisely. 

Albin [21 also tried to approximate the departure 
process for a single server with exponentially distributed 
service times by using a hybrid approach. The building 
blocks in her hybrid method are the asymptotic method and 
the Poisson method. The Poisson method approximates the 
departure process as a Poisson process. The asymptotic 
method approximates the departure process as the arrival 
process. Therefore, the CD2 in Albin [2] becomes: 

CD2 = WCA 2 + (1 - w) (8) 
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i 

where 

W: weighting function, w = w(n*,pIp 2 )
n*: the effective number of component arrival 

processes 
Pi: the volume to capacity ratio at queuing station 

It is notable that Albin's approach for approximating 
departure processes has the same deficiency associated with 
superposition arrival processes since the weighting function 
depends on the volume to capacity ratio at the second 
queuing station. Theoretically, the departure processes at 
the first queuing station should not be affected by the 
operation at the second queuing station unless there is a 
spillback from the second queuing station that blocks the 
operation of the first queuing station. Also, the departure 
processes should not vary for different evaluation purposes. 
In addition, Albin's results are only applicable to qtieucs 
with exponential service times. Therefore, it is desirable 
to develop a methodology to accurately estimate departure 
processes for generally distributed arrivais and service 
times. 
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CHAPTER 3
 
MICROSCOPIC SIMULATION MODEL
 

A simulation model has been developed to analyze tow 
operations along waterways. It may be used to determine the 
relations among delays, tow trips, distributions of 
generated tow trips, lock operations, lock service-time 
distributions, travel times, coal consumption, and coal 
inventories. The simulation model can take into account 
stochastic effects and seasonal variations. This model 
enables the following to be estimated: tow delays at each 
lock, interarrival and interdeparture-time distributions for 
each lock and for each direction, tow travel times along che 
waterway, inventory levels and expected stock-out amounts 
for coal de'.ivered by waterway, and many other variables of 
interest to waterway users and managers. The estimation of 
tow delays, tow travel times, inventory levels, and expected 
stock-out amounts is useful for estimating economic benefits 
of lock improvements. Moreover, the interarrival and 
interdeparture time distributions and the delays estimated 
with 
queues 
time 

this model should 
with generally-

distributions. 

be 
dist

useful 
ributed 

for 
in

analyzing 
terarrival 

series 
and ser

of 
vice-

Data Base 

The simulation model is developed on the basis of PMS 
(lock Performance Monitoring System) data collected since 
1975. This data base includes very detailed information on 
traffic through the locks as well as physical aspects of 
lockage [15]. It is very useful for understanding and 
quantifying waterway characteristics, such as lock 
operations, arrival distributions, service-time 
distributions, tow-size distributions, and stalls. 

Features of Simulation Model 

The simulation model developed in the early stages of 
the study focuses on the relations among delays, trip 
generations, distributions of tow speeds, arrivals, 
departures and service trrnes, and coal inventories. The 
output of this model inliu'lnes delays, means and variances of 
interarrival-time and in-ýrdeparture-time distributions, and 
inventory level. These are useful for estimating inventory 
costs, stock-out costs, and expected benefits due to lock 
rehabilitation or lock construction. The relations among
delays, interarrival, interdeparture and service-time 
distributions provide results for the analysis of series or 
networks of queues. 
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The simulation model is microscopic. It traces the 
movement of each individual tow and records its 
characteristics, including its number of barges, commodity 
types, speed, origin and destination, travel direction, and 
arrival time at various points. In addition, the model 
determines cumulative deliveries, cumulative consumption, 
and actual inventories at various plants. 

The simulation model is an event-scanning model where 
the system status is updated by events. The system status 
includes the simulation clock, lock operating condition, 
movement of tows, and inventory level at each utility plant. 
The heart of the simulation model is the scheduler routine. 
This routine provides the control for the entire length of 
the simulation period. The scheduler, at appropriate times, 
invokes all other operational routines necessary to process 
the simulation. 

This model can handle any distributions for trip 
generation, travel speeds, lock service times and tow sizes. 
These distributions can be specified for each interval in 
tables or by standard statistical distributions. Currently, 
travel speeds are assumed to be normally distributed, while 
general distributions based on empirical observations are 
used for other input variables. Tows are allowed to 
overtake other tows. A FIFO (First-In-First-Out) service 
discipline is currently employed. This model simulates two-
way traffic through common servers and accounts for stalls. 

There are five types of events in this model. First, 
tow trips are generated stochastically based on the actually 
observed traffic distributions. Currently, the model uses a 
table to represent the trip-generation pattern and is, 
therefore, not limited to standard mathematical probability 
distributions. 

Second, the tow entrance in a lock is determirel by tow 
arrival time at that lock, the times when chambers become 
available, and the chamber assignment discipline. If a tow 
arrives before the lock is available, it needs to wait in 
the queue storage area. Otherwise, it is served according 
to the chamber assignment discipline that will be discussed 
later. In general, the lock service is presently First-In­
First-Out, subject to the chamber assignment procedure. 

Third, whenever a coal tow arrives at its destination, 
the cumulative delivery at the destination will be increased 
by the amount of coal that tow is carrying. The cumulative 
consumption and inventory at the destination will also be 
updated then. 
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Fourth, the status of cumulative consumptions, 
inventories, and consumption rates for all coal destinations 
will be updated in every unit of time. This provides 
detailed information on inventory levels for all coal 
destinations. 

Fifth, whenever a stall occurs at a chamber, the 
chamber becomes unavailable until the end of the stall. 

The size of waterway systems that the model can handle 
is limited by the computer capacity and the storage caDPcity 
of the Fortran compiler or linker. The simulation model has 
been developed with "dynamic dimensioning" to the degree 
allowed by the computer system available. Parameter 
statements are used so that the dimensions, and hence 
capacities, of the model components may readily be modified. 
This allows the maximum flexibility of waterway system 
design and the most efficient computer utilization. Thus, 
the dynamic dimensioning programming technique allows 
flexibility in the number of locks, chambers, cuts, waterway 
links, tows, utility plants, origin-destination (O-D) pairs 
and simulation time periods. Currently this model can 
simulate two-way operation on a mainline waterway. 

This simulation model is programmed in Fortran-77, 
which allows us to simulate relatively complex operations. 
The following is a more detailed description of how tow trip 
generation, tow travel times, and coal inventory levels are 
computed in this model. The overall structure of the 
simulation model is displayed in Figure 2. A logic flow 
chart is provided in Figure 3. 

Assumptions of Simulation Model 

The simulation model was developed based on the 
following assumptions: 

1. 	 The time interval between successive tow trip 
generations, service times, and tow sizes are 
generally distributed. These distributions are 
represented by probability distribution tables 
which are exogenous inputs. Therefore, the 
simulation model may be applied to any systems of 
lock systems. 

2. 	 The tow maintains a constant size through the 
entire trip. 

3. 	 The service discipline is First-In-First-Out 
(FIFO). This assumption is consistent with 
waterway operations on the Mississippi and Ohio 
Rivers. 
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INPUT: 

Link & Lock Characteristics 
Traffic Demand 
Probability Distributions 
Inventories and Consumption 

PROCESS: 

Origin Nodes: generating tow 	 trips 
Destination Nodes: updating: 	 cumulative deliveries 

cumulative consumption 
inventory levels 

Locks: 	 assigning chamber
 
determining number of cuts
 
determining lock service times
 
calculating queuing times
 

Links: 	 determining traveling times
 
determining arrival times to next locks or
 
destinations
 

OUTPUT: 

Average waiting time at each lock 
Average waiting time at each lock for each O-D pair 
Total waiting time for each lock 
Means and variances of interarrival and interdeparture 

times at each lock 
Cumulative deliveries, cumulative consumption, inventory 
levels 

Average tow speed 
Total number of tow trip for each O-D pair 
Total lock service time for each lock and chamber 
Total tow travel times and distances 

FIGURE 2. STRUCTURE AND ELEMENTS OF SIMULATION MODEL 
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4. 	 The main chamber is preferred for chamber 
assignment. This reflects the wish of lock 
operators to avoid the additional work and delays 
due to disassembling and re-assembling extra cuts 
through an auxiliary chamber. 

5. 	 The queue storage area is unlimited. Storage 
space is not a significant problem on waterways. 
However, the assumption requires modification when 
the simulation model or the numerical method 
(developed based on the results of the simulation 
model) is applied to other systems. 

6. 	 Tow speeds are normally distributed. For lac> 
better data, this assumption is based on watý- ­
statistics of vessel performance [32]. 

7. 	 Each tow maintains a constant speed between its 
nrigin and destination. 

8. 	 The average backhaul speed is a constant ratio of 
the average linehaul speed. The assumption 
reflects the effects of currents and barge loads. 

9. 	 The time intervals between two successive stalls 
and the durations of stalls are exponentially 
distributed. 

10. 	 The barge payload is the same for all coal barges 
and remains constant throughout a trip. This 
implies that the industry has a standard barge 
size and loads each barge to capacity. 

11. 	 There is an exogenously specified fraction of 
barges carrying coal on a coal tow. That is, a 
coal tow also carries other commodities. This 
assumption is also consistent with the barge 
industry operations. 

12. 	 The consumption rates at each utility plant are 
uniformly distributed within specified (and 
arbitrarily short) intervals. 

Simulation Routines 

The simulation model consists of five operation 
routines and one scheduler routine. The operation routines 
are associated with the five types of events: (1) tow trip 
generation (trip generation routine), (2) tow arrival at a 
lock (lock routine), (3) coal tow arrival at its destination 
(node routine), (4) periodical inventory and consumption 
updates (periodical routine), and (5) stall occurrence 

22
 



(stall routine). These operation routines are invoked by 

the scheduler routine. 

Trip Generation Routine 

Tow trips are generated stochastically, but the mean of 
their generating distribution is constant for each origin-
destination (O-D) pair over each simulation time period. 
Each O-D pair has its own distribution for trip generation 
which may be represented in this model by a probability 
distribution table or a standard statistical distribution. 
The probability distribution tables represent cumulative 
distribution curves, where the abscissas represent 
cumulative frequency and the ordinates represent the ratio 
of the tabulated variable to its mean. The trip generation 
tables can be easily changed since they are specified 
explicitly in the input data. 

Whenever a tow trip is generated, its size (numbers of 
barges per tow) and speed are also generated. This model 
assumes that each tow will maintain its size and speed 
throughout its entire trip. As in trip generation, the long 
run average tow size is constant for each O-D pair, but the 
size of each individual tow is generated stochastically. 
The distribution of tow sizes is represented by a 
probability distribution table and each O-D pair has its own 
distribution table. The tow size distribution table is an 
exogenous input data. Therefore, it flexibly accommodates 
any type of tow size distribution. 

Tow speeds are specified as an input to the model in 
the form of a probability distribution. For lack of better 
data, the distribution of speeds is currently assumed to be 
normal [32]. This model currently assumes that tows 
maintain constant speeds between origins and destinations 
and that backhaul speeds are a constant ratio of linehaul 
speeds. 

To avoid generating extreme speed values, a speed range 
is specified. Currently, if the generated speeds are lower 
than the 2.5 percentile speed or zero, or higher than the 
97.5 percentile speed, these speeds must be regenerated. 

Tow traffic is divided into coal traffic and non-coal 
traffic. Therefore, for the same O-D trips, there may be 
two different O-D pairs with different trip rates for coal 
traffic and for non-coal traffic, respectively. It is 
presently assumed that only a specified fraction of the 
barges on a coal tow are carrying coal. In addition, the 
randomly generated tow sizes for coal traffic are restricted 
by upper and lower limits to preclude extremely small or 
extremely large tows. The tow size, the fraction of barges 
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carrying coal, and the barge payload determine the amount of 
coal delivered by a coal tow. 

After the characteristics associated with the newly 
generated tow trip are determined, the trip generation 
routine also determines the next lock the tow must pass 
through and the tow's arrival time at this lock. The tow's 
arrival time at this lock is determined by its trip 
generation time and its travel time over the distance 
between the origin and this lock. Meanwhile, the trip 
generation routine also determines the a-rival sequence at 
this lock for the tow and updates the nxYt tow's arrival 
time at this lock. The information about next tow arrival 
time at this lock, the tow arrival sequence at this lock, 
and the associated tow characteristics (size, speed, travel 
direction) is recorded for reference by other routines. 

Lock 	Routine 

The lock routine is the most complex one in the 
simulation model. It performs the following tasks: 

1. 	 chamber assignment; 

2. 	 determination of tow entrance time; 

3. 	 computation of tow waiting time; 

4. 	 determination of chamber available time (tow 
departure time) for next tow; 

5. 	 computation of interarrival time between two 
successive tows; 

6. 	 computation of interdeparture time between two 
successive tows; 

7. 	 determination of next stop (a lock or the 
destination node) for the tow; 

8. 	 computation of travel time between this lock and 
the next stop; and, 

9. 	 determination of arrival sequence of the tow at 
the next stop. 

The lock service discipline is currently First-In­
First-Out in the lock routine. The lock routine serves the 
first tow based on the arrival sequence. Such an assumption 
simplifies the simulation model and is consistent with 
waterway operations on the Mississippi and Ohio Rivers. 
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The chamber assignment is based on the chamber 
available time, the expected chamber service time, and the 
lock selection bias factor. The chamber available time is 
either the departure time of previous tow or the stall 
ending time. The expected chamber service time depends on 
the number of cuts required for the tow moving through 
chamber. The lock selection bias factor reflects in 
equivalent time units the advantage of utilizing the main 
chamber. 

The number of cuts is determined by cut s-zes nd tow 
sizes. The cut sike is exogenous. Each chamber *aq an 
upper limit on cut size (number of barges that can be 
handled simultaneously), which determines the number of cuts 
required. A tow may be disassembled into different numbers 
of cuts at different lock chambers. Therefore, the lock 
routine needs to determine the required number of cuts at 
each chamber for each tow. 

It is noted that the expected chamber service time used 
in chamber assignment is the average value of service tin.­
for the required cut numbers. This reflects the reality of 
operation. In fact, the lock operator would not know in 
advance the actual service time for the tow. The operator 
could only roughly estimate the average service time for the 
tow based on its size. 

If a lock has dissimilar chambers in parallel, (main 
and auxiliary chambers are usually provided), it is 
currently assumed that the main chamber will be preferred, 
unless the additional wait time it requires (compared to the 
auxiliary chamber) exceeds a specified level. This lock 
selection bias factor reflects the additional work and 
delays required to break tows into more (and smaller) cuts, 
move them separately through an auxiliary chamber and then 
reassemble them. Bias factors have been estimated 
separately for various locks from empirical data. They can 
be easily modified since they are specified explicitly in 
the input data. 

Once the chamber is assigned, the tow entrance time is 
also determined. The tow entrance time is either the tow 
arrival time or the available chamber time, whichever is 
greater. If the tow arrives before the chamber is 
available, the tow must wait in the queue storage area. 
Otherwise, the tow enters its assigned chamber immediately. 
The queue storage area is currently assumed to have 
unlimited capacity and to be adjacent to the lock. 

For most applications the tow waiting time is the most 
important output of the simulation model. It is defined as 
the difference between a tow's arrival time and t e.nt'ry 
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time into the lock. Such tow waiting times may o w-!­
before traffic levels approach lock capacity since -ow 
arrivals and lock service times are not constant. 

The available chamber time for the next tow is the tow 
departure time which depends on tne entrance time and th9 
lock service time of the current tow and on the possible 
occurrence of a stall. In general, without a stall 
occurrence, the tow departure time is defined as the sum of 
the tow entrance time and the required lock service time. 
If a stall occurs before the service is completed, the tow 
would be detained until the end of the stall. Therefore, 
the tow departure time is equal to the sum uf the tow 
entrance time, the required lock service time, and stall 
duration if there is a stall. 

Lock service times may be generated from a specified 
distribution table or a standard statistical distribution. 
The distribution table can directly reflect actually 
observed service times. Therefore, the model can be applied 
to any types of locks. Lock service times will be affected 
by lock improvements which are represented by smaller 
average lock service times or reduced service time 
variances. The average lock service times vary for 
different locks, chambers, and numbers of cuts. 

Whenever a stall occurs before lock service is 
completed, the lock routine must update the stall event at 
this lock. That includes information on the stall 
occurrence time and duration. 

The interarrival time between two successive tows is 
defined as the time intervcl between the current tow's 
arrival time and the arrival time of a previous tow. 
Similarly, taie interdepar ure time i s defined as the time 
interval between the current tow's departure time and the 
departure time of a previous tow. 

The lock routine also determines the next stop for the 
tow and the tow arrival time at the next stop. The next 
stop could be a lock or the destination of the tow. The tow 
arrival time at the next stop is determined by the tow 
departure time and tow travel time over the distance between 
this lock and the next stop. If the next stop is a 
destination and the - is not a coal tow, the lock routine 
will let the tow le, the system; otherwise, the lock 
routine will determine the tow's arrival sequence at the 
next stop and update the next tow's arrival time at this 
stop in the meantime. The information about the next tow's 
arrival time at this stop, the tow arrival sequence at this 
lock, and the associated tow characteristics (size, speed, 
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and travel direction) is recorded for reference by other 

routines. 

Node Routine 

Whenever a coal tow arrives at its destination, i.e., 
at a utility plant, the node routine updates the inventory 
status there. The node routine computes the cumnulative 
deliveries, cumulative consumption, inventory level, and 
stock-out amounts and durations. 

Cumulative deliveries are determined from initial 
inventory levels, delivery amounts, and arrival time at the 
destination. The initial inventory level is an exogenous 
parameter specified for each destination. The node routine 
can estimate several different cumulative deliveries 
associated with different initial inventory levels 
simultaneously. The delivered amount is determined from the 
barge payload and the number of arriving coal barges. 
Currently, the barge payload is assumed to be constant for 
all loaded barges and the number of coal barges is currently 
assumed to be a constant fraction of tow size but these 
assumptions are easy to modify. The coal barge fractions 
vary for different origin-destination pairs. Although coal 
barge fractions are constant throughout the simulated 
period, the amount delivered from each tow is not constant 
since tow sizes are randomly generated, as mentioned 
previously. 

Cumulative consumption is a function of consumption 
rate and time. The mean consumption rate is constant for 
each utility plant during each simulation period. However, 
in the short run the consumption rate fluctuates randomly 
around its mean. Currently, the consumption rate is assumed 
to be uniformly distributed. The actual distribution is yet 
to be determined. In addition, this model assumes that the 
consumption rate stays constant during the unit time 
interval which is specified exogenously. The consumption 
rate is updated every time unit by the periodical routine. 
Therefore, cumulative consumption is a step-wise linear 
function over time whose slopes represent consumption rates. 

Inventory levels are represented in this model by the 
difference between cumulative deliveries and cumulative 
consumption. Whenever inventory levels drop to negative 
values, the node routine computes stock-out amounts and 
durations for the analysis of total costs. 

Periodical Routine 

This model assumes that the consumption rate stays 
constant during the unit time interval which is specified 

27
 



exogenously. The periodical routine updates the consumption 
rate every time unit, and also updates the cumulative 
consumption, the inventory status, and the stock-out amount 
and duration for each utility plant in every time unit. 
There are three functional differences between the node 
routine and the periodical routine. 

1. 	 The periodical routine does not update the 
cumulative deliveries. 

2. 	 The periodical routine updates the cumulative 
consumption and the status of inventory level for 
each utility plant. However, the node routine 
updates those for only one utility plant at a 
time. 

3. 	 The periodical routine can update the consumption 
rate based on a seasonal factor. The node routine 
can only update that when a coal tow arrives its 
destination. 

With the periodical routine, consumption and inventories are 
estimated more precisely than without it. 

Stall Routine 

Stalls are random failures during which chambers are 
not available to serve tows. Thus stalls tend to increase 
delays and service time variability. Stall characteristics 
differ among chambers and are defined in terms of durations 
and frequencies which depend on weather conditions and 
physical conditions at each chamber. Stalls are relatively 
rare compared to other events. Their occurrence is very 
difficult to predict. Currently, the model assumes that the 
time intervals between two successive stalls are 
exponentially distributed. 

The stall routine updates the available chamber time 
and the next stall occurrence time and duration at this 
chamber. The available chamber time is defined as the sum 
of the stall occurrence time and its duration. 

Scheduler Routine 

The scheduler routine controls the simulation clock and 
invokes the five operation routines to process the necessary 
function in the simulation model. The procedures in the 
scheduler routine are as follows: 

1. 	 updating the next event occurrence time for each 
event type; 
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2. 	 determining the next event occurrence time and 
event type among the five types of events; 

3. 	 moving the simulation clock further to the 
occurrence time of next event; and, 

4. invoking the appropriate operation routine. 

Input Requirements 

Generally, four types of inputs are required to operate 
the simulation model: 

1. 	 those related to link and lock characteristics; 

2. 	 those related to traffic demand between origins 
and destinations; 

3. 	 those related to probability distributions; and, 

4. those related to inventories and consumption. 

Link and Lock Characteristics 

The following kinds of information are needed for each 
link: 

1. 	end nodes; 

2. 	link length; 

3. 	distances between the end nodes and the lock; 

4. 	number of chambers; 

5. 	average frequencies and durations of stalls; 

6. 	maximum number of cuts at each chamber; 

7. 	average service time for each number of cuts at 
each chamber; 

8. 	 maximum number of barges for each cut size at each 

chamber; 

9. 	 bias time for each auxiliary chamber; and, 

10. 	 random number seeds for lock service times. 
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Traffic Demand 

Traffic demand in tows per day is expressed in the form 
of origin-destination (O-D) matrices by time periods. The 
lengchs of time periods may be different and need to be 
specified. The required input data for traffic demand are 
as follows: 

1. 	 origin and destination nodes for each O-D pair; 

2. 	 average trip rate in tows per day for each O-D 
pair, each direction and each time period; 

3. 	 average number of barges per tow for each O-D 
pair; 

4. 	 fraction of coal barges in a tow for each coal O-D 
pair; 

5. 	 maximum and minimum limits of tow size for each 

coal O-D pair; 

6. 	 barge payload in short-tons; 

7. 	 speed distribution (mean and standard deviation); 

8. 	 ratio of backhaul speed to linehaul speed 
(full/empty or upstream/downstream); and, 

9. durations of time periods. 

Probability Distributions 

Probability distributions-are specified in this model 
for the following: 

1. 	 lock service times 

2. 	 trip generation 

3. 	 tow composition (barges per tow); and, 

4. 	 coal consumption at power plants. 

The probability distribution tables represent 
cumulative distribution curves, where the abscissas 
represent cumulative frequency, and the ordinates represent 
the ratio of the tabulated variable to its mean. To reduce 
the input complexity, a specified number of equal intervals 
is currently used for any cumulative frequency distribution. 
Therefore, only the values on the ordinates associated with 
frequency intervals are required. 
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Inventories and Consumption 

Initial inventory levels in short-tons for different 
nodes (utility plants) must be specified. In addition, 
consumption rates in short-tons per day are expressed in the 
form of node matrices by time period. The information on 
cumulative deliveries, cumulative consumption, and inventory 
levels, is provided for intervals whose duration in days 
must be specified. 

Model Output 

This 	model provides the following results: 

1. 	mean and standard deviation of waiting time at 
each lock; 

2. 	 mean and standard deviation of the interarrival 
time distribution for each lock; 

3. 	 mean and standard deviation of interarrival time 
distribution for each lock and direction; 

4. 	 mean and standard deviation of interdeparture time 
distribution for each lock; 

5. 	 mean and standard deviation of interdeparture time 
distribution for each lock and direction; 

6. 	 total tow travel time (not including the queuing 
time, lockage time, and dwell time) in days; 

7. 	 mean and standard deviation of travel time in 
hours per tow between any lock and any adjacent 
node; 

8. 	 total tow travel distances in 1,000 miles; 

9. 	 average travel speed in miles per day; 

10. 	 average lock service time for each chamber and 
cut; 

11. 	 total number of tow trips for each O-D pair; 

12. 	 monthly cumulative deliveries, cumulative 
consumption, and inventory levels tables in 1,000 
short-tons for different power plants; 

13. 	 cumulative deliveries, cumulative consumption, and 
inventory levels tables for specified intervals in 
1,000 short-tons for different power plants; 
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14. 	 graphs of cumulative deliveries and cumulative 
consumption by specified time intervals for 
different power plants; and, 

15. 	 graphs of inventory level by specified time 

interval for different power plants. 

Validation 

To check the logic of this simulation model, its 
results are first compared to theoretical (but very well 
established) results from queuing theory. This also checks 
the ability of the model to represent general stochastic 
distributions. The results of the model are then compared 
with observed data to demonstrate how closely the model 
represents real systems and verify its ability to simulate 
the special features of waterways. 

The predicted waiting times by the simulation model at 
a single lock are compared with those obtained from queuing 
theory when arrivals are Poisson distributed and service 
times are generally distributed. The validation is 
conducted for a variety of volume/capacity (V/C) ratios 
ranging from 0.0471 to 0.8934. To reduce the variance of 
the output each result is obtained by averaging the output 
from 30 independent simulation runs. To insure results are 
compared for a steady state, each simulation run discards 
the first 10,000 tow waiting times and collects the next 
12,000 values for computing the average waiting time. The 
results are shown in Table 1. They confirm that the 
simulated and theoretical average waiting times are 
extremely close. Such results verify that the overall 
mechanism of the simulation model is correct. They also 
show that generally distributed service times are generated 
satisfactorily in the simulation model. That is reassuring 
since the same logic is also used to generate generally 
distributed interarrival times for G/G/1 queues and, 
ultimately to develop metamodels for series of G/G/I queues. 

The simulation results are then compared with the 
observed data (from January 1987) at Locks 22, 24, 25, 26, 
and 27 on the Mississippi River. These particular five 
locks were selected mainly because they were considered 
especially critical to the entire network by the Corps of 
Engineers. Hence extensive data analysis and performance 
evaluations had already been conducted for these five locks. 

At that time, Locks 22, 24, and 25 had single 600 ft 
long chambers. Locks 26 and 27 had two chambers (600 ft and 
360 ft long at Lock 26, 1200 ft and 600 ft at Lock 27). It 
is noted that the simulation results for the five lock 
system were obtained simultaneously. The validation results 
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TABLE 1. COMPARISON OF THEORETICAL AND SIMULATED RESULTS 
FOR A SINGLE LOCK QUEUE (M/G/1) 

V/C TA 1 TS* 2 Wsim* 3 Wt 4 Devia.5 
Avg 
(hr) 

Var 
(hr 2 ) 

Avg 
(hr) 

Var 
(hr 2 ) (hr) (hr) (%) 

0.893 0.888 0.789 0.793 0.319 4.9516 5.0059 -1.09 
0.755 0.888 0.789 0.670 0.227 1.5575 1.5522 0.34 
0.566 0.888 0.789 0.503 0.128 0.4926 0.4935 -0.19 
0.330 0.888 0.789 0.293 0.044 0.1082 0.1087 -0.46 
0.047 0.888 0.789 0.042 0.001 0.00155 0.00156 -0.64 

*1 TA : interarrival times 
*2 Ts service times 

*3 Wsim average waiting times from simulation 
*4 Wt average waiting times from queuing theory 
*5 Devia. deviation which is defined as (Wsim-Wt)/Wt*100% 

TABLE 2. 	 COMPARISON OF SIMULATED AND OBSERVED AVERAGE 
WAITING TIMES 

Lock Wsim*1 Wobs* 2 Difference 95% Confidence 
(min) (min) (min) Interval 

22 4.09 3.73 0.36 	 3.49 
24 6.12 6.36 0.24 	 6.72 

_*325 4.49 10.94 6.45 
26 119.40 130.99 11.59 60.73 
27 36.49 34.43 2.06 23.92 

*1 Wsim : 	 simulated average waiting times 
*2 Wobs : 	 observed average waiting times 
*3 The comparison is not appropriate. 
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TABLE 3. COMPARISON OF CHAMBER VOLUMES 

3
Lock Chamber Volsim* Volbs *2 Difference 95%C.I.* 

(tows/day) (tows /day) (tows/day) 

22 1 44.61 45 0.39 1.88 
24 1 56.00 56 0.00 2.24 
25 1 51.40 52 0.60 2.13 
26 1 275.20 265 10.20 2.83 
26 4 155.96 167 11.04 3.81 
27 1 390.95 389 1.95 10.25 
27 4 306.73 306 0.7 10.62 

*1 Volsim : simulated volumes 
*2 Volobs : observed volumes 
*3 95%C.I.: 95% confidence interval based on t test 

TABLE 4. COMPARISON OF CUT VOLUMES 

Lock Cham*1 Cuts* 2 VolSim 3 Vol bs Difference 95% 
(tows/day) (tows~day) (tows/day) C.I.* 5 

22 1 1 30.35 31 0.65 1.47 
22 1 Ž2 14.26 14 0.26 ­
24 1 1 39.76 40 0.24 1.76 
24 1 Ž2 16.24 16 0.24 ­
25 1 1 35.88 37 1.12 1.65 
25 1 z2 15.52 15 0.52 0.97 
26 1 1 75.46 74 1.46 2.04 
26 1 Ž2 199.74 191 8.74 3.25 
26 4 1 137.25 147 9.75 2.87 
26 4 Ž2 18.71 20 1.29 ­
27 1 1 390.95 389 1.95 10.25 
27 4 1 269.05 265 4.05 5.59 
27 4 ?2 37.67 41 3.33 5.76 

*1 Chami chamber 
*2 "Cuts"h are subsets of barges into which tows are 

subdivided for passage through lock chambers 
*3 Volsim simulated volumes 
*4 Volobs observed volumes 
*5 95% C.I. 95% confidence interval based on t test. 
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are summarized in Tables 2, 3, and 4. Each result is 
averaged from 80 independent simulation runs. The initial 
condition for simulation is assumed to be an empty 
system,which is consistent with the observed condition for 
this system in winter. 

Table 2 shows that the difference between the simulated 
and observed average waiting times for each lock are within 
the 95% confidence interval based on the t test, except at 
Lock 25. The observed data also show that tows sometimes 
were kept waiting at Lock 25 even when the chamber was idle. 
Such operation is somewhat unusual. Therefore, no direct 
comparison of average waiting times at Lock 25 is 
appropriate. Tables 3 and 4 also show that the simulation 
model represents the real system quite well. 

Each simulation run takes from a few seconds to a few 
minutes on a personal computer, depending on traffic 
volumes, duration of simulation periods, network size, and 
other factors. Despite that, simulation time becomes 
expensive for evaluating large combinatorial investment 
scheduling problems. For example, when there are n=20 
possible investment projects, it is necessary to simulate 
220 combinations to make the best decision. 30*220 separate 
simulation runs are then required if each performance 
measure is based on the average over 30 independent 
replications. Further'more, the project combinations may 
have to be evaluated over several time periods. Therefore, 
as n increases, direct evaluation by simulation becomes very 
expensive. 

A metamodeling approach is proposed to overcome the 
computational requirements of simulation. A simulation 
model can then be treated as a function with unknown 
explicit form that turns input parameters into output 
performance measures. The metamodeling approach provides a 
method to develop simple formulas to approximate this 
function. 
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CHAPTER 4
 
NUMERICAL METHOD
 

Methodology 

In this study, a numerical method has been developed 
for estimating delays through a series of queues. This 
method was originally developed for systems with bi­
directional servers. With a few simplifications, this 
method can be adapted for the more generally encountered 
systems with one-directional servers. 

The numerical method decomposes large systems into 
single lock queuing stations and then analyzes the 
interarrival and interdeparture-time distributions at theses 
single locks one by one. Although the numerical method is a 
decomposition procedure, each lock is not analyzed 
independently. The interarrival-time distribution at one 
lock is affected by the interdeparture-time distributions at 
adjacent locks. 

The method consists of three major modules: arrival 
processes, departure processes, and delay functions. 
Arrival processes at a particular lock depend on the 
interdeparture time distributions from the upstream and 
downstream locks. The departure processes depend on the 
interactions among the interarrival-time distributions and 
service-time distributions at one lock. The delay functions 
define the relations among waiting times, interarrival-time 
distributions, interdeparture-time distributions and 
service-time distributions. The basic concept of this 
method is to identify two parameters, namely the mean and 
coefficient of variation, of the interarrival and 
interdeparture-time distributions for each lock, and then 
estimate the implied waiting times. Currently, the 
following assumptions are used in the numerical method. 

1. 	 Interarrival times and service times are generally 

(i.e., arbitrarily) distributed. 

2. 	 Each lock has one chamber. 

3. 	 Inflows and outflows occur only at the two end-
nodes of a series of locks. 

4. 	 The average upstream volumes are equal to the 
downstream volumes. 

5. 	 The volume-to-capacity ratio (p) is less than 1.0 
at every lock. 
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It should be noted that Assumptions 2, 3, 4, and 5 are 
only applicable to the numerical method. The simulation model 
is not limited by those assumptions. The numerical method can 
provide a quick and inexpensive approach for the analysis of 
lock delays. However, Assumptions 2, 3, 4, and 5 limit the 
applicability of the currently developed numerical method and 
necessitate the substitution of the simulation model when 
significant deviations from those assumptions must be 
considered. With some extensions to the numerical method 
expected in the near future, Assumptions 2 and 3 may be 
eliminated. Assumption 4 could be relaxed even though it is 
usually realistic for waterways. 

Each module of the numerical method consists of one or 
more metamodels that are functional relations whose parameters 
are statistically estimated from simulation results. Thus, 
simulation is not just used to validate these metamodels; it 
is the basis for their development. 

Two simulation experiments were conducted in this study. 
Experiment 1 served two goals here, namely the development of 
metamodels and the validation of these metamodels. A split-
sample analysis was conducted to achieve both of the above 
goals in a single experiment. The split-sample analysis 
proceeded as follows. First, the collected data points from 
Experiment 1 were grouped in strata based on one or more 
important categorical variables (This method is called a 
stratum-specific split-sample scheme [20]). Second, all data 
points within a stratum were randomly assigned to one of two 
groups, namely the training group (used to develop metamodels) 
and the holdout group (used to validate metamodels and to test 
their reliability). Such assignment was done separately for 
each stratum. The goal of stratum-specific random assignment 
is to insure that the two groups of data (training and 
holdout) are equally representative of the parent population 
[20] . In this study, a computer randomly assigned 2/3 of data 
to the training group and 1/3 of data to the holdout group. 
It is noted that the above two steps were conducted before any 
data were analyzed. 

Experiment 2 aimed to validate the numerical method 
against the simulation model. The ranges of variables in 
these experiments were carefully chosen to reflect the ranges 
encountered in waterway systems. 

The procedures used in developing each metamodel are 
summarized below. 

1. Queuing theory was applied to identify the input 
(independent) variables which will affect the output 
measures (dependent variables), and to propose 
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variables and the output measures with appropriate 
structure form. 

2. 	 The relevant output measures (dependent variables) 
were plotted versus the input (independent) 
variables. This step helped confirm the relations 
between the output measures and the input 
parameters. 

3. 	 Pearson correlation coefficients were computed. 
This step confirmed correlations between selected 
dependent variables and the independent variables 
and helped avoid multicollinearity problems among 
the independent variables. 

4. 	 The parameters were estimated for the proposed 
functional relations ("metamodels"). The selection 
of the preferred metamodel was based mainly on the 
sample squared multiple correlation (R2 ), the 
standard error of residuals, and the residual 

R2analysis. The defines the explanatory power of 
the alternative metamodels. In general, the 

R2metamodel with closest to 1 is preferred since 
it best accounts for the variation of dependent 
variables. It is also important to examine if the 
independent variable is significant in explaining 
the variation of dependent variable. 

5. 	 Residual analysis was performed to detect outliers 
and to check whether any metamodel violated certain 
regression assumptions, such as normality and 
homoscedasticity. The residual analysis should 
include the property-analysis and the graphical 
analysis of residuals. The basic residual 
properties to be examined include the mean, 
variance, skewness, and kurtosis. The residual 
mean should equal 0. The variance is the residual 
mean square. Skewness indicates the degree of 
asymmetry of a distribution; it should be close to 
0 to avoid violating the normality assumption. 
Kurtosis indicates the heaviness of the tails 
relative to the middle of the distribution; it 
should be close to 3 to avoid violating the 
normality assumption. (The commercial statistical 
software usually deducts 3 from the value of 
kurtosis. Therefore, the kurtosis should be close 
to 0 if it is obtained from commercial statistical 
software.) However, skewness and kurtosis 
statistics are highly variable in small samples and 
hence are often difficult to interpret [20]. The 
graphical analysis is the most direct and revealing 
way to examine a set of residuals. The residuals 
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can be displayed in one or two dimensions. The 
useful one-dimensional plot of residuals includes 
histograms (or stem-and-leaf), schematic plots, and 
normal probability plots [20]. The two-dimensional 
plot examines the relationships of the residuals to 
either dependent or independent variables and is 
sometimes useful for identifying violation of 
regression assumptions [20]. 

Structure cf Numerical Method 

Basically, the numerical method is a decomposition 
model. It decomposes systems of queues into separate 
queuing stations. The analysis of each queuing station is 
decomposed into three steps, namely arrival processes, 
departure processes and delays. 

1he arrival processes module serves two functions. 
First, for each direction at each lock it identifies the 
interarrival-time distribution based on the interdeparture­
time distribution from the previous lock and the intervening 
speed distribution. Second, the overall interarrival-time 
distribution at each lock is estimated by combining the 
interarrival-time distributions from the two adjacent locks. 
The arrival processes module is very important in 
identifying and taking into account the interdependence 
among locks, even when the system is decomposed into 
individual lock queuing stations. 

The departure processes module also serves two 
functions. First, the overall interdeparture-time 
distribution at each lock is estimated based on the overall 
interarrival-time distribution and the lock's service-time 
distribution. Second, the overall interdeparture-time 
distribution at each lock is split into directional 
interdeparture-time distributions. Thus, at each lock, the 
departure processes module estimates two output 
distributions (interdeparture times for two directions) 
based on three input distributions (interarrival times for 
two directions and bi-directional service times). 

The delay module estimates average waiting time at each 
lock. The inputs for the delay function are the variances 
of the interarrival times, interdeparture times, and service 
times. While the service-time distributions at each lock 
are exogenously specified inputs, the parameters of the 
interarrival-time and interdeparture-time distributions are 
obtained from the arrival processes module and the departure 
processes module, respectively. 

A scanning procedure is employed in the numerical 
method to analyze successive locks. Interrelations among 
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the locks in a system are accounted for since the departure 
distribution from one lock influ,-nces the arrival 
distribution at the next lock. in the initial scan along 
one direction, no endogenous estimate is yet available of 
arrival distributions from the opposing direction (unless 
there is only one-way traffic). If there is opposing 
traffic, some initializing estimates must be provided for 
the variance of interdeparture times from the opposing 
direction. The scans are then repeated in an iterative 
algorithm which alternates scanning direction. After the 
first iteration, the initializing estimates are replaced
with endogenous estimates from previous iterations. The 
iterative scans continue until convergence is achieved in 
values of variables such as wait times or interdeparture­
time variances. 

Sampling Plan 

The data points in Experiment 1 were collected from 40 
different simulated lock systems. Each system consisted of 
three locks. The trip rate differed for each lock system 
and remained constant throughout the data collection period. 
Therefore, the data points in Experiment 1 represent the 
characteristics of 40 different trip rates. These 40 
different trip rates were generated uniformly in the range 
between 0.0417 tows/hr (1 tow/day) and 1.6667 tows/hr (40 
tows/day). The range was selected to cover all possible 
levels empirically found on waterways. 

The three locks within any system differed from each 
other, in terms of their Volume to Capacity (V/C) ratio and 
the squared coefficient of variation of service times. 
Therefore, the data points in Experiment I represent the 
characteristics of 120 V/C ratios and 120 squared 
coefficients of variation of lock service times. The V/C 
ratios were generated uniformly between 0.04 to 0.97, 
covering all observed waterway operations. The squared 
coefficients of variation of lock service times were 
generated uniformly between 0.34 to 0.81, covering almost 
all waterway operations. 

The distances between locks and the tow speed
distributions were also different in each lock system. The 
distances were qenerated uniformly between 0 to 156 miles. 
The average tow speeds were uniformly distributed between 72 
to 295 miles/day. The standard deviations of tow speeds 
were uniformly distributed between 2.22 to 136.3 miles/day. 
The ranges of distances and speed distributions were 
selected to cover most waterway situations of practical 
interest. 
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At each lock, the collected characteristics for its 
corresponding data point include the directional 
interarrival-time distributions, the directional 
interdeparture-time distributions, the overall interarrival­
time distribution, the overall interdeparture-time 
distribution, and the average waiting time. The 
corresponding trip rate, V/C ratio, lock service time 
distribution, distances, and tow speed distribution were 
also recorded. Therefore, the database ii,Experiment 1 
contains 120 different average waiting times, 120 different 
overall interarrival-time distributions, 120 different 
overall interdeparture-time distributions, 240 different 
directional interarrival-time distributions, and 240 
different directional interdeparture-time distributions. 

To obtain the above data, each lock system was 
simulated with 30 independent replications. To ensure that 
the results were for a steady state, each simulation run 
discarded the first 10,000 observations and collected the 
next 12,000 values for computing the data characteristics. 
10,000 observations were discarded based on moving average 
analysis [33]. In addition, the random number seeds were 
all 200,000 apart, which ensured the random number streams 
would be independent since each independent replication 
discarded 10,000 observations and collected the next 12,000 
values. Therefore, the average waiting time at each lock 
was obtained by the following steps. 

1. 	Thirty independent replications of the simulation 
were made for each lock system, each generating an 
output sequence of 22,000 tows. Hence, a set of 
observations were obtained: 

Wmn= n-th member of the output (tow waiting 
time) sequence from the m-th independent 
replication of the simulation, m=l,... 
30, 	 n=1 .... 22,000. 

2. 	 The sample mean of the average waiting time was 
obtained from each replication [33]. 

22,000W1 


-12,000n=10,001 

3. 	 The unbiased estimate of the average waiting time W 
is estimated as follows [331: 
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30
 

w=-L wm 	 (10) 

The variances of overall interarrival-time distributions 
were obtained by the following five steps. 

1. 	A set of observations were obtained from 30 
independent simulation replications: 

tAMn= 	 n-th member of the overall 
interarrival-time sequence from the 
m-th independent replication of the 
simulation, m=l, .. .30, 
n=l,...22,000. 

2. The sample mean of the overall interarrival times 
was 	 obtained on each replication [33]: 

St'M -22,000 

11Amn(11)F = 
12 ,000 n=10,001
 

3. 	 The estimate of the average interarrival time was 
obtained as follows [33]: 

30
 

S-:(12) 

4. 	 The variance estimate was obtained for each 
replication [33]: 

22,000ESAm 12n 00 
12, 0 0n=10, 001 

5. 	 The variance of overall interarrival times was 
obtained as follows (33]: 

30 

UA 2 0 	 (14)2 


The variances of overall interdeparture-time distributions, 
directional interarrival-time distributions, and directional 
interdeparture-time distributions also were obcained 
following 	 the above procedures. 
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Arrival Processes 

The following two steps were used for estimating the 
mean and standard deviations of interarrival times. 

SteD 1 

Estimate the means and standard deviations of 
directional interarrival times at a particular lock from the 
directional interdeparture-time distributions of the 
adjacent upstream and downstream locks. 

If flows are conserved between locks and if the V/C 
ratio is less than 1, the average directional arrival rates 
at one lock should be equal to the average directional 
departure rates from adjacent upstream and downstream locks. 
Therefore, the average directional interarrival times at 
that lock should also be equal to the average directional 
interdeparture times from adjacent upstream and downstream 
locks. Such relations are represented by: 

- k=i-l' if j=1l15 
taji= tjýk {k=i+l,if j=2 (15) 

where 
ai : the average interarrival time for Direction j andLock i 

-- k : the average interdeparture time for Direction j and 

tjk Lock k 

j : direction index (1 = downstream, 2 = upstream) 

If each tow moves at the same speed, the directional 
interarrival time distributions at one lock will be 
identical to the directional interdeparture time 
distributions at the preceding lock. However, speed 
variations change headway distributions along the distance 
between locks. 

A metamodel is developed to estimate the standard 
deviation of directional interarrival times at one lock. 
Before developing the metamodel, the database obtained in 
Experiment 1 was split into two groups of data (training and 
holdout). The stratum-specific split-sample scheme was 
employed for data assignment. For developing the "_:amodel, 
4 data points were available from each of the 40 iocK 
systems (downstream: the relation between Locks 1 and 2, and 
the relation between Locks 2 and 3; upstream: the relation 
between Locks 3 and 2, and the relation between Locks 2 and 
1). Therefore, a total of 160 data points was available 
from Experiment 1 for metamodel development. The split 
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ratio between the training and holdout groups is 
approximately 2:1. Therefore, 107 observations were 
included in the training group and 53 observations were 
included in the holdout group. 

The following metamodel was estimated with data from 
the training group is as follows: 

,ai. =0 k+O.02511n(l+ Dikcvik) {k=i-l,if j=1
I.&vik k=i+l,if j=2 (16) 

(0.002) 

R2 = 0.999954 n = 107 se = 0.0586 /y = 5.168561 

where 

standard deviation of interarrival times for 
Direction j and Lock i 

adjk 	 standard deviation of interdeparture times for 
Direction j and Lock k 

Dik 	 distance between Locks i and k 

Pvik : 	 average tow speed between Locks i and k 

avik : 	 standard deviation of tow speeds between Locks i 
and k 
direction index (1 = downstream, 2 = upstream) 

Se standard error of dependent variable 

Ay : 	 mean of dependent variable 

The numbers shown in the parentheses are the standard errors 
of the estimated parameters directly above. 

Currently, there is less theoretical basis for this 
metamodel than for the other metamodels developed in this 
study. This metamodel was developed largely by empirical 
analysis. The dependent variable (standard deviation of 
directional interarrival-time distribution) was plotted 
versus possible influential factors that include the 
standard deviation of directional interdeparture-time 
distribution, distance between two locks, average tow speed, 
and standard deviation of tow speeds. The correlation 
coefficients between the dependent variable and influential 
factors were also computed. The plot and the correlation 
coefficient show that the standard deviation of the 
directional interarrival-time distribution is highly 
correlated to the standard deviation of the directional 
interdepa-ture-time distribution. However, the plot and the 
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correlation coefficient also show that the standard 
deviation of the directional interarrival-time distribution 
is also affected by the factors of distance, average tow 
speed, and standard deviation of tow speeds. Therefore, 
various structural forms were considered for this metamodel, 
and two were intensively pursued. 

The first metamodel for ca includes only one 
independent variable (the standard deviation of the 
directional interdeparture-time distribution). The second 
metamodel for aa also considers the distance, average tow 
speed, and standard deviation of tow speeds as influential 

R2factors. The for the first metamodel is 0.999885. The 
descriptive statistics and test results for the first 
metamodel are included in Table 5. 

The structural form of the second metamodel was 
preferred since it satisfies an important logical 
constraint. The standard deviation of the directional 
interarrival times should be equal to the standard deviation 
of the directional interdeparture times from the preceding 
lock when the distance between these two locks is 0 or when 
the standard deviation of tow speeds is 0. The chosen 
second type metamodel (Eq. 16) does satisfy those logical 
constraints. 

It is noteworthy that in Eq. 16, the coefficient for 
the standard deviation of directional interdeparture times 
from the preceding lock is equal to 1 and the intercept is 
0. In fact, in the first version of this metamodel, the 
intercept was 0.00526 with a standard error of 0.021 which 
indicated that the intercept was not significant. The 
coefficient for the standard deviation of directional 
interdeparture times was 0.999, or approximately equal to 1. 
This suggested that, theoretically, the standard deviation 
of directional interarrival times should be equal to the 
standard deviation of directional interdeparture times plus 
an adjustment factor depending on the speed distribution and 
distance. Therefore, this metamodel was redeveloped under 
two restrictions: (1) the intercept should be 0 and (2) the 
coefficient for the standard deviation of directional 
interdeparture times should be 1. The descriptive 
statistics and test results for the second type metamodel 
are listed in Table 6. 

The comparison between Tables 5 and 6 shows that the 
second meta del does predict better the standard deviation 

R2of directional interarrival-time distribution. The of 
the second metamodel is slightly higher. However, the 
statistics of E and E% of the second metamodel are 
much better. The mean of E is 0.04 for the second and 0.07 
for the first. The mean of E% is 1.68 for the second and 
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TABLE 5. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE
 
TRAINING GROUP, FIRST METAMODEL FOR Ua 

Variable Mean S.D. * Min Max 

'aji 5.17 8.61 1.17 49.57
 
04k 5.10 8.67 1.03 49.57
 

0.07 0.07 0.00041 0.29 
E%** 3.17 3.02 0.0016 12.66
 
n+= 107, Ri 2++ = 0.999885
 

*S.D. standard deviation 
• *E absolute error of uaji between simulation and 

metamodel 
•***gk :percentage error of aaji between simulation and 

metamodel 
+n 	 number of observations 
++RI 2 :the coefficient of determination 

TABLE 6. 	 DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 
TRAINING GROUP, SECOND METAMODEL FOR ca 

Variable Mean S.D. * Min Max 

Uaji 5.17 8.61 1.17 49.57
 
Udjk 5.10 8.67 1.03 49.57
 
Dik 77.83 46.65 0.00 156.00
 
IAvik 169.00 56.25 72.00 295.00 
Uyjk 	 47.54 32.30 2.22 136.30 

0.04 0.04 0.00046 0.21
 
Ek*** 1.68 1.57 0.0016 7.60
 

n÷ = 107, Ri2++ = 0.999954 

*S.D. standard deviation 
S*E :absolute error of uaji between simulation and 

metamodel 
•**g%6 percentage error of uaji between simulation and 

metamodel 
+n :number of observations
++RI2 the coefficient of determination 
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3.17 for the first. The maximum E is 0.21 for the second 
and 0.29 for the first. The maximum E% is 7.6 for the 
second and 12.66 for the first. Therefore, the second 
metamodel was chosen for predicting the standard deviation 
of the directional interarrival times. 

The holdout group data was used to test the reliability 
of this metamodel, which is used to predict the standard 
deviation of directional interarrival times. It is assumed 
in this test that the values obtained from the simulation 
model are exact. Therefore, the deviations between the 
values obtained from simulation and metamodel are considered 
errors. The percentage error is defined as the error 
divided by the value obtained from simulation. In this 
test, the absolute values are used to compute errors and 
percentage errors. The use of this metamodel is to predict 
the standard deviation of directional interarrival times for 
the holdout group constitutes cross-validation. The 
descriptive statistics and test results for the holdout 
group are listed in Table 7. 

The shrinkage on cross-validation, defined as R ­

R22, indicates the reliability of metamodels. In general, 
shrinkage values less than 0.10 are indicative of a reliable 
model [20]. Therefore this metamodel is reliable since the 
shrinkage is 0.000001. In addition, the absolute error 
(mean=0.04 and maximum value=0.17) and absolute percentage 
error (mean=1.74 and maximum value=7.76) in Table 7 also 
show this metamodel predicts the standard deviation of 
directional interarrival times well. However, the maximum 
E% is 7.6 for the training group and 7.76 for the holdout 
group, which indicates that the directional arrivals 
metamodel sometimes generates considerable errors and leaves 
room for improvement. 

Step 2 

The mean and coefficient of variation of the overall 
interarrival-time distribution for this lock are estimated 
bated on the coeffiuicL.L •f variation of directional 
interarrival times. The coefficient of variation of 
directional interarrival times could be obtained by dividing 
the standard deviation of directional interarrival-time 
distribution with its mean. 

Ai- talil* t a2i (7 
tAl - * -Ei2 (17) 

talil a2i 

2CAi 2 = 0"179+0"41(Caii + Ca2 i 2 ) (18) 
(0.027) (n.014) 

R2 = 0.9188 n = 79 Se = 0.0059 Ay = 0.988 
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where 

tAi : 	 the average interarrival time at Lock i 

CAI 2 	 squared coefficient of variation of interarrival 
times at Lock i 

cai2 squared coefficient of variation of directional 
aji2 interarrival times for Direction j and Lock i 

The meaning of Eq. 17 would be clearer if viewed in 
terms of the average trip rates rather than the average 
interarrival times. Eq. 17 implies that the overall arrival 
rate at certain lock is the sum of the average directional 
arrival rates from upstream and downstream. 

Before developing the metamodel of Eq. 18, the stratum-
specific split-sample scheme was also employed to split the 
database of Experiment 1 into the two groups (training and 
holdout). For developing the metamodel, there were 120 
observations available from the database of Experiment 1. 
Each observation was obtained from one individual lock and 
included the characteristics of overall interarrival-time 
distribution and corresponding directional interarrival-time 
distributions at one lock. The split ratio between the 
training and holdout groups was approximately 2:1. 
Therefore, the computer randomly assigned 79 observations to 
the training group and 41 observations to the holdout group. 

In Eq. 18, the squared coefficients of variations of 
upstream and downstream interarrival times carry the same 
weight in estimating the overall variance of interarrival 
times, since directional trip rates are equal according to 
Assumption 4. Eq. 18 should be reestimated when applied to 
a more general network of queues with imbalanced flows. 

The data in the holdout group was also used to validate 
the reliability of this metamodel and the cross-validation 
test was again conducted. The descriptive statistics and 
test results for the training group and the holdout group 
are listed in Tables 8 and 9. 

The shrinkage (RI 2 -R 2 
2 ) in this metamodel is 0.0282 

which indicates that this metamodel is fairly reliable. 
This becomes more convincing after examining the absolute 
error and absolute percentage error in the cross-validation 
test. The absolute error ranges from 0.00022 to 0.03 with a 
mean of 0.007. The absolute percentage error ranges from 
0.022 to 3.26 with a mean of 0.70. 
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TABLE 7. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 

HOLDOUT GROUP (ca) 

Variable Mean S.D.* Min Max 

Uaji 5.04 7.82 1.23 49.10 
Gdjk 4.98 7.84 1.08 49.10 
Dik 78.34 45.64 0.00 152.00 

A/vik
Cyjk 

171.56 
45.78 

60.09 
34.54 

79.20 
2.22 

295.00 
136.30 

E 0.04 0.04 0.00004 0.17 
E%*** 1.74 1.81 0.0027 7.76 

n+ = 53, R22++ = 0.999953 

*S.D. standard deviation 
• *E : absolute error of aaji between simulation and 

metamodel 
• **Ek :percentage error of aji between simulation and 

metamodel 
+n number of observations 
++R2 2 :the coefficient of determination 

TABLE 8. 	 DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 
TRAINING GROUP (CA2 ) 

Variable Mean S.D.* Min Max 

CAi2 2 0.99 0.02 0.89 1.02 
Cali 2 0.98 0.04 0.74 1.02 
c i2 0.99 0.03 0.84 1.02 

0.004 0.004 0.00007 0.02 
E% 0.46 0.40 0.0066 1.79 

n+= 79, 	 R1 
2 ++ = 0.9188 

*S.D. - standard deviation 
• *E :absolute error of CAi 2 between simulation and 

metamodel 
•***E% percentage error of CAi2 between simulation and 

metamodel 
+n number of observations 
++RI 2 :the coefficient of determination 
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TABLE 9. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 
HOLDOUT GROUP (CA 2 ) 

Variable Mean S.D.* Min Max 

CAi2 2 0.98 0.03 0.90 1.02 
Cali 2 0.98 0.04 0.83 1.02 

i 0.98 0.04 0.79 1.02 
E 0.007 0.007 0.00022 0.03 
E%***0.70 0.74 0.022 3.26 
n+= 41, R2 2++ = 0.8906 

*S.D. standard deviation 
**E :absolute error of CAi 2 between simulation and 

metamodel 
***E%; :percentage error of CAi 2 between simulation and 

metamodel 
+n number of observations 
++R2 2 :the coefficient of determination 

Departure Processes 

The departure-processes module estimates the mean and 
squared coefficient of variation of interdeparture times. 
Based on the flow conservation law, if the V/C ratio is less 
than 1, the mean outflow rate should be equal to the mean 
inflow rate. Therefore, the average directional 
interdeparture time can be determined from the corresponding 
interarrival time: 

tdji = taji (19) 

The coefficient of variation of interdeparture times is 
estimated in two steps. 

Step 1 

The coefficient of variation of interdeparture times is 
first estimated with the two directions combined. Departure 
processes with generally distributed arrivals and service 
times are analyzed by using Laplace transforms. The use of 
Laplace transforms for derivations in queuing theory (which 
is quite frequent) is presented in texts such as Kleinrock 
[21]. Some analytic relations obtained in this dissertation 
are shown below using the following notation: 
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Let: 

Al GA mean and variance of interarrival times 

, o2 mean and variance of lock service times 

tD' 2 mean and variance of interdeparture times 

-t 012 mean and variance of lock idle times 

p V/C ratio 

CA2 , cs2 , cD 2 : squared coefficients of 
for interarrival times, 

variation 
service 

times, and interdeparture times 

fA(t), fs(t), fD(t), fI(t) probability density functions 
(pdf) for interarrival times, 
lock service times, 
interdeparture 
idle times 

times, and lock 

F*(z), F;(z) : Laplace transforms forF;(z), F (z), SD A(t),I fs(t),I~~~f fD (t),I fi (t) 

For example, for interarrival times, the Laplace transform 
is expressed as 

tF;(z) =f fA(t) e- dt (20) 
0 

The departure process in a queuing station may be 
analyzed for two different conditions: with and without a 
queue. The interdeparture-time distribution would be equal 
to the service-time distribution while there are queues 
waiting for service. However, the interdeparture time would 
be equal to the sum of the idle time and the service time 
while there is no queue. Therefore, the Laplace transforms 
for the interdeparture time distributions can be represented 
as follows: 

F (z) Iwith queue= F*(z) (21) 

F1 (z) Iwithout queue = F,(z) F*(z) (22) 

The probability of having a queue is given by the 
volume/capacity ratio p [21]. Then, the probability of not 
having a queue is (1-p). Therefore, the Laplace transform 
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for the interarrival-time distribution can be represented by 
Eq. 23: 

FD (z) =(l-p) F* (z) Iwithout queue+pFD (Z) with queue (23) 

= (l-p)Fl-(z)Fs (z) +pFs (z) 

The mean of a distribution can be represented by the 
negative value of the first derivative of its Laplace 
transform when z equals 0. Therefore, the average 
interarrival time, service time, interdeparture time, and 
idle time can be represented by Eqs. 24a to 24d: 

tA : aF;(z) (24a)
az x:0 
(2a 

aFs (z)ts - az zo(24) 

aFD (z)
tD az z=(24c) 

-- aFt"(z)S- -Fz) I(24d) 
= az 

The variance can be expressed as the difference between 
the second derivative of the Laplace transform and the 
squared mean. Eqs. 25a-25d express such relations for 
interarrival time, service time, interdeparture time, and 
idle time distributions: 

a2F;(Z) Iz=O - A (25a)az2 

a&'s (z)zO
as2 =- Izo - s2 (25b)az 2 

OD2 = a2 (z) Iz=O - tD2 (25c)2az 

GI2 2-F* z Ix=0 - -E12 (25d)
az2 

When z equals 0, the Laplace transform is equal to 1, 
producing the following relations for interarrival-time, 
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service-time, interdeparture-time, and idle-time 
distributions: 

FA(0) =: 	 (26a) 

Fs(O) =1 	 (26b) 

FD (0)=l 	 (260) 

F(0) =1 	 (26d) 

Combining Eqs. 	 23, 24b, 24c, 24d, 26b, and 26d yields 

- aF(z) =0 = -(i-P) (- 1 -ES) +P(-tE.) (27) 
tD ~az 	 (7 

Due to flow conservation, if the V/C ratio is less than 1, 
then the average interdeparture time would be equal to the 
average interarrival time: 

tD = tA 	 (28) 

Therefore, Eqs. 27 and 28 can be combined: 

ED = (l-p) (-t+ts)+P-is = -tA 	 (29) 

Since p = ts/tA, Eq. 29 yields 

T, = TA 	 (30) 

Combining Eqs. 23, 24b, 24d, 25b, 25c, 25d, 26b, 26c, 26d, 
and 30 yields 

a2FD (Z)
2 - z - 2 p) (2++ 	 (31)2
OD a z=O tD Il)O S5 AtqVE 

Z2 

Dividing Eq. 31 by tD2, we can obtain the following relation 
for the squared coefficient of variation CD2 " 

2 2CD2 = (l-p) I--+-P +C s p 2 -p	 (32) 
A2t 

In the special case where the arrival process is 
Poisson distribilted and the service times are exponentially 
distributed, then due to the memoryless property of the 
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Poisson distribution, the variance of idle times would be 
equal to the variance of interarrival times. Since the 
interarrival times for a Poisson process are exponentially 
distributed and since the mean and standard deviation of an 
exponential distribution are equal, we can state the 
following: 

G02 2= -2 (33) 

as2 = -s 2 (34) 

Therefore, in this special case, Eq. 31 can be simplified to 

OD2 = GA2 (35) 

which is consistent with Burke's theorem [11] . In that 
theorem Burke proved that, when the arrivals are Poisson 
distributed and the service times are exponentially 
distributed, then the departures must be Poisson distributed 
with the same mean and variance as the arrivals. 

The main difficulty in estimating the squared 
coefficient of variation of interdeparture times (Eq. 32) 
when arrivals and service times are generally distributed is 
determining the variance of the lock idle times. These 
depend on the way in which the previous busy period 
terminated. This problem may be bypassed by developing a 
metamodel for directly estimating the squared coefficient of 
variation of interdeparture times. 

Before developing the metamodel for estimating the 
coefficient of variation of overall interdeparture-time 
distribution, the stratum-specific split-sample scheme was 
also employed to split the database of Experiment 1 into the 
two groups (training and holdout). For developing the 
metamodel, there were 120 observations available from the 
database of Experiment 1. Each observation was obtained 
from one individual lock and included the characteristics of 
overall interdeparture-time distribution and corresponding 
overall interarrival-time, service-time distributions, and 
V/C ratio at one lock. The split ratio between the training 
and holdout groups is approximately 2:1. Therefore, the 
computer randomly assigned 79 observations to the training 
group and 41 observations to the holdout group. 

Following the approach outlined in Section 4.1, the 
following metamodel is developed: 

R 2 = 0.9984 n = 79 se = 0.0058 0.83116 
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2 2 2CD = 0.207+0.795(CA (I-p) +p) +1.001 (CS2 p -p 2 ) (36) 

(0.065) (0.066) (0.0046) 

R2 = 0.9984 n = 79 Se = 0.0058 Ay = 0.83116 

The metamodel of Eq. 36 was developed based on the 
structural form of Eq. 32. Eq. 36 was originally developed 
by using four separate variables: (1) CA2 (1-p), (2) p, (3)
Cs2p2, and (4) p2. However very high correlations were 
observed between Variables 1 and 2 and Variables 3 and 4. 
The correlation coefficient between Variables 1 and 2 is ­
0.9993 and the correlation coefficient between Variables 3 
and 4 is 0.9222. Moreove-, the coefficients of Variables 1 
and 2 were almost equal. Variables 3 and 4 also had nearly 
equal coefficients. To avoid multicollinearity problems,
Variables 1 and 2 were combined into a single variable while 
Variables 3 and 4 were combined into a second variable to 
develop Eq. 36. The correlation coefficient between the 
combined variables (1 and 2) and (3 and 4) is -0.1775, which 
indicates the new combined variables are not highly 
correlated. It is noteworthy that the sum of the intercept 
(0.207) and the parameter of CA2 (1-p)+p (0.795) is 
approximately equal to 1. In addition, the dependent 
variable has a standard error of 0.0058, which is only 0.7% 
of its mean. 

The holdout group data was used to validate the 
reliability of this metamodel and the cross-validation test 
was again conducted. The descriptive statistics and test 
results for the training group and the holdout group are 
listed in Tables 10 and 11. 

This metamodel is very reliable since the shrinkage is 
0.0029. It performs especially well in the cross-validation 
test, where its absolute error ranges from 0.00014 to 0.03, 
with a mean of 0.007, and its absolute percentage error 
ranges from 0.02 to 3.34, with a mean of 0.84. 

Since the mean and standard deviation of an exponential
distribution must be equal, its coefficient of variation 
must be 1.0. Thus, for the special case of an M/M/1 queue: 

CA2 = 1 (37) 

CS2 = 1 (38) 
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TABLE 10. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 

TRAINING GROUP (CD 2 ) 

Variable Mean S.D. * Min Max 

C 2 0.83 0.15 0.39 1.02 
CA2 0.99 0.02 0.89 1.02 
Cs2 0.53 0.14 0.34 0.81
 
p 0.54 0.27 0.04 0.97
 
E 0.004 0.004 0.00009 0.02
 
Et 0.54 0.46 0.02 2.30
 

= 79, Ri2++ = 0.9984 

*S.D. standard deviation 
absolute error of CD2 between simulation and 
metamodel 

•**Sk :percentage error of CD2 between simulation and 
metamodel 

+n :number of observations 
++R12 the coefficient of determination 

TABLE 11. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 

HOLDOUT GROUP (CD2 ) 

Variable Mean S.D. * Min Max 

CD 2 0.82 0.17 0.46 1.02 
CA2 0.98 0.03 0.90 1.02 
Cs2 0.53 0.13 0.35 0.79
 
p 0.54 0.27 0.04 0.94
 
E** 0.007 0.009 0.00014 0.03 

E%*** 0.84 0.96 0.02 3.34 

n+ = 41, R22++ = 0.9955 

*S.D. standard deviation 
•*E : absolute error of CD2 between simulation and 

metamodel 
•**Ek : percentage error of CD2 between simulation and 

metamodel 
+n : number of observations 
++R2 2 : the coefficient of determination 
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Substituting Eqs. 37 and 38 into Eq. 36, the latter may be 
simplified as follows: 

CD2 = 0. 2 0 7 +0.7 9 5(l-p+p) +(p2-p2) :90.207+0.795):1.002 1. 

This result is also consistent with Burke's Theorem [111. 

The parameters and structural form of this metamodel 
are similar to those of Eq. 32, which was analytically 
derived for G/G/I queues. In addition, its standard error 
is extremely tight (Se/ly = 0.007) and it satisfies Burke's 
Theorem very closely when applied to the special M/M/1 case. 
It may be concluded that the good performance of the 
metamodel is due to its development approach. Its 
structural form was based on queuing theory while its 
coefficients were estimated statistically from simulation 
results. Such a metamodel should be very useful for 
predicting interdeparture time distributions from G/G/I 
queues embedded in larger systems, such as series and 
networks. 

Step 2 

The coefficients of variation of directional 
interdeparture-times for upstream and downstream traffic 
must be estimated. For this purpose the following metamodel 
was developed: 

Cdji = 0.518+0.491C 2 CD21 (40)
(0.0056) (0.0068) 

R2 = 0.9710 n = 158 se = 0.013 iy = 0.9164 

where 

Cdji 2 : 	 squared coefficient of variation of directional 
interdeparture times for Direction j and Lock i 

Cajii: 	 squared coefficient of variation of directional 
interarrival times for Direction j and Lock i 

CDi 2 	 squared coefficient of variation of 
interdcPparture times for Direction j and Lock i 

Before developing the above metamodel (Eq. 40), the 
stratum-specific split-sample scheme was also employed to 
split the database of Experiment 1 into the two groups 
(training and holdout). For developing this metamodel, 240 
observations were available from the database of Experiment 
1. Two observations (upstream and downstream directional 
interdeparture-time distributions) could be obtained from 
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one individual lock. Each observation included the 
directional interdeparture-time distribution and 
corresponding V/C ratio, the overall interdeparture-time, 
and the directional interarrival-time and service-time 
distributions at one lock. The split ratio between the 
training and holdout groups was approximately 2:1. 
Therefore, the computer randomly assigned 158 observations 
to the training group and 82 observations to the holdout 
group. 

The development of this particular metamodel (Eq. 40) 
was based on empirical analysis. The Pearson correlation 
coefficients were computed and the dependent variable 
(squared coefficient of variation of directional 
interdeparture-time distribution) was plotted versus each 
possible influential factor. The possible influential 
factors included the following: 

1. 	 CD2 (squared coefficient of variation of overall 
interdeparture-time distribution), 

2. 	 Ca 2 (squared coefficient of variation of 
directional interarrival-time distribution), 

3. 	 CA2 (squared coefficient of variation of overall 
interarrival-time distribution), 

4. 	 Cs2 (squared coefficient of variation of service 

times), 

5. 	 V/C ratio, 

6. 	 Ln(CD2 ), 
7. 	 Ca 2CD2 , 

58. 	 (CD2 )0. , 

9. 	 (Ca 2 ) 2 , 

510. (Ca 2 ) 0 . , 

11. Ca 2 Ln(CD2 ) , and 

12. CD2 Ln(Ca 2 ) 

The seventh factor in the above list (Ca 2 CD2 ) was selected 
R2because it yielded the highest and the smallest se. 

The holdout group data was used to validate the 
reliability of this metamodel. The cross-validation test 
was again performed. The descriptive statistics and test 
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results for the training group and the holdout group are 
shown in Tables 12 and 13. 

The shrinkage (0.0007) indicates that the reliability 
of this metamodel is high. In addition, the results of the 
cross-validation test further support its reliability since 
the absolute error ranges from 0.00004 to 0.05, with a mean 
of 0.009, and the absolute percentage error ranges from 
0.005 to 5.41, with a mean of 0.96. However, the maximum 
absolute percentage error is 7% in the training group and 
5.41 in the holdout group. Therefore, this metamodel does 
not always predict precisely the coefficient of variation of 
directional interdeparture-time distribution and could stand 
further improvement. 

Delay Function 

The delay function is intended to estimate the average 
waiting time at a lock. Marshall [26] has tried to express 
the variance of interdeparture times in terms of the average 
waiting time. In this study, the average waiting time is 
expressed in terms of the variance of interdeparture times 
by applying Marshall's formula. An exact solution for the 
average waiting time is obtained as follows: 

w= GA2+2as2-D (41) 

where 

W : the average waiting time 

CA2 : variance of interarrival times 

US2 : variance of service times 

D2 : variance of interdeparture times 

tA : average interarrival time 

p : volume to capacity ratio 
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TABLE 12. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 

TRAINING GROUP (Cd 2 ) 

Variable Mean S.D.* Min Max 

cdi2 0.92 0.08 0.69 1.02
 
- 0.98 0.04 0.74 1.02
 
S0.83 0.15 0.39 1.02
 

0.01 0.009 0.00005 0.05
 
E%*** 1.08 1.08 0.006 7.00
 

n' = 158, Ri2++ = 0.9710 

*S.D. standard deviation 
**E : absolute error of Cdji 2 between simulation and 

metamodel 
***E•% : percentage error of Cdji 2 between simulation and 

metamodel 
+n : number of observations 
++RI 2 : the coefficient of determination 

TABLE 13. DESCRIPTIVE STATISTICS AND TEST RESULTS FOR THE 

HOLDOUT GROUP (Cd 2 ) 

Variable Mean S.D.* Min Max 

cdi2 0.92 0.08 0.70 1.02 
c .2 0.98 0.03 0.79 1.02

aJý 0.83 0.15 0.41 1.02 

0.009 0.0096 0.00004 0.05 
0.96 1.03 0.005 5.41 

n+= 82, R2 2++ = 0.9703 

*S.D. standard deviation 
**E : absolute error of Cdji 2 between simulation and 

metamodel 
***E% : percentage error of Cdji between simulation and 

metamodel 
+n : number of observations 
++R2 2 : the coefficient of determination 
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For the general queuing system the difficulty with Eq. 
41 is that only the variances of interarrival and service 
times are known, while the variance of interdeparture times 
is unknown. This difficulty can now be overcome by using 
the metamodel developed in this study to estimate the 
coefficient of variation of interdeparture times (Eq. 36). 

In this delay function, the average waiting time 
increases as the variance of interarrival and service times 
increase and decreases as the variance of interdeparture 
times increases. The average waiting time approaches 
infinity as the volume/capacity ratio p approaches 1.0. 

Algorithm for Two-Way Traffic Systems 

Delays depend on the interarrival, interdeparture, and 
service-time distributions. Therefore, to estimate delays, 
we need to know in advance the means and variances of the 
interarrival-time, interdeparture-time, and service-time 
distributions. For two-way traffic systems with series of 
G/G/l queues and bi-directional servers, a difficulty arises 
in identifying the variances of interarrival and 
interdeparture times. The variance of interarrival times at 
a certain lock labeled k is affected by the interdeparture­
time distributions from adjacent upstream and downstream 
locks. The interdeparture-time distributions at adjacent 
upstream and downstream locks depend on their interarrival­
time distributions, which are affected by the 
interdeparture-time distributions from Lock k. Hence, the 
variances of interarrival time- at adjacent locks depend 
upon each other. Therefore, the variances of interarrival 
times cannot be determined from a single one-directional 
scan along a series of queues. For example, if we tried to 
estimate delays by scanning from upstream toward downstream, 
we could determine at Lock k the variance of interarrival 
times from upstream, but the variance of interarrival times 
from downstream would be unknown and would be affected by 
the interdeparture-time distribution from this Lock k. To 
o--ercome such complex interdependence, an iterative 
algorithm is proposed. It starts scanning in one direction 
while using some initialized assumed values for the 
variances of interdeparture times from the opposite 
direction. It can thus sequentially estimate the 
interarrival and interdeparture-time distributions for each 
lock. Then, the scanning direction is reversed and the 
process is repeated, using the interdeparture-time 
distributions for the opposite direction estimated in the 
previous scan. Alternating directions, the scanning process 
continues until the specified convergence criteria (usually 
the squared coefficient of variation or the variances of 
interdeparture times) computed in successive iterations 
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converge. Then the algorithm stops reestimating the arrival 
distributions and proceeds to estimate delays. 

The following algorithm is designed to apply the 
metamodels in estimating single-chamber lock delays. The 
notation used in this algorithm is defined as follows: 

taji :average i interarrival time for Direction j andLock 

-- t~k averagek time for Direction j anddjk Lock interdeparture 

Gajin2 variance of interarrival times for Direction j, 
Lock i and Iteration n 

0dikn2 variance of interdeparture times for Direction j, 
Lock k and Iteration n 

adio02 : variance of interdeparture times from origin node 

2 : variance of interdeparture times from destinationnode 

Dik : distance between Locks i and k 

I'vik : average tow speed between Locks i and k 

Ovik : standard deviation of tow speeds between Locks i 
and k 

i :lock index 

j :direction index (1 = downstream, 2 = upstream) 

n :iteration 

tAx : average interarrival time at Lock i 

GAinOmin Iteration nvarianceI of interarrival times at Lock i and 

tDi : average interdeparture time at Lock i 

GD2f : variance of interdeparture times at Lock i and 
Iteration n 

ia si 2 : variance of lock service times at LoC. 

Pi : volume/capacity (=V/C) ratio at Lock i 

average inflow rate at Lock i 
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coefficient of variation of directional 
interarrival times for Lock i, Direction j, and
Iteration n 

coefficient of variation of directionalCdj In interdeparture times for Lock i, Direction j, and 

Iteration n 

Csi coefficient of variation of service time at Lock 
i 

CAin,' 	 ODin coefficients of variation forinterarrival times and interdeparture 

times, respectively, at Lock i and 
Iteration n 

ci : 	 constant (assumed value) 

L : 	 total number of Locks 

Wi 	 average waiting time at Lock i 

m 	 indicator of scanning direction (1= from origin 
to destination, 2= from destination to origin) 

The required inputs of this algorithm include the means 
and coefficients of variation for service-time distributions 
and inflow distributions, distances between locks, and the 
means and standard deviations of speed distributions. This 
algorithm estimates delays as well as means and coefficients 
of variewtLn for interarrival and interdeparture-time 
distribu. ons. The algorithm consists of the following 
steps: 

1. 	 Compute the average directional interarrival and 
interdeparture times for each lock: 

t = {k=i-l, ifj= 	 (15a)tdi = iiaji dtk k=i+l,if j=2 

2. 	 Compute the average interarrival time for each lock: 
-- tali* ta2i 

tAx 	 - l i=, . . .M (17a) 
tali+ ta2i 

3. 	 Estimate the coefficients of variation for interarrival 

and interdeparture times at each lock. 

3.1 	 Set n=1, m=1 

3.2 	 Assume initial values for the standard deviations of 
interdeparture times in Direction 2, at Locks 2 through 
L-1
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od2i0 	 : c,, i=2, ... L-1 (42) 

3.3 	 Starting from Lock 1, let i = 1 

3.4 	 Compute the standard deviations of directional 
interarrival times at Lock i using the metamodel 
expressed in Eq. 16: 

3.4.1 if j=1 and m=1 

(almin= 0 dl in+ 0 .0251 in(l÷ 11-I ) (16a)
•vii -i 

3.4.2 if j=2 and m=1 

Ga2in:Od2i'ln-1+ 00251 ln(i+ 11ii 1) (16b)
I'vii+l 

3.4.3 if j=1 and m=2 

aalmin=Odi-in-l+0.0251 in(l+ Dii-lovii- ) (16c) 
•vii -1 

3.4.4 if j=2 and m=2 

aa2in=Gd2i+in+ 0.0251 ln(1+ i1 vi+1V ) (16d)
P vii'l 

3.5 	 Compute the squared coefficients of variation of 
directional interarrival times at Lock i: 

C(•aji 2	 (43Caj i_2 (( -a ----) 	 (43 ) 

taji 

3.6 	 Compute the squared coefficient of variation of 
combined interarrival times at Lock i 

2CAin 
2 	

= 0.179+0.41(Calin + C2in2 ) (18a) 

3.7 	 Estimate the squared coefficient of variation for 
interdeparture times at Lock i using the metamodel 
expressed in Eq. 36: 

O 0.207+0.795(CAin2(-P(i)+Pi)+I •1O01(Csi2p@-P) (36a) 

3.8 	 Compute the variance of interarrival times at Lock i 

GAin2 	 = CAin2LAi2 (44) 
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3.9 Compute the variance of interdeparture times at Lock i 

2GDin2 = 	 CDi - 2Di (45) 

3.10 	 Compute the squared coefficients of variation of 
directional interdeparture times at Lock i, using the 
relation developed in Eq. 40: 

2Cdjin2 = 0.518+0.491Cajin2 CDinf	 (4Ca) 

3.11 	 Compute the standard deviations of directional 
interdeparture times at Lock i: 

adjin = 	 Cdjin dii (46) 

3.12 	 Repeat Steps 3.4 - 3.11 for i = 2, ... L 

3.13 	 Set n = n+1, m=2 

3.14 	 Starting from Lock L, let i = L, and repeat Steps 
3.4 -	 3.12 for i = L, (L-l), ... 1 

3.15 	 Set n = n+l, m=1 

3.16 	 Repeat Steps 3.4 - 3.14 

3.17 	 If the following condition is satisfied, then go to 
Step 4. Otherwise, go to Step 3.15 

Cdjin2 - Cdjin-I2 0.001 1=1, ... L, j=l,2 (47) 

Cdj in-i 

4. 	 Estimate the average waiting times using the formula 
expressed in Eq. 41: 

- Ain2 +2A si 2_ Din2 (41a)
2tAi(i-Pi) 

Algorithm for One-Way Traffic Systems 

Although the numerical method was originally 
developed for two-way traffic systems, with a few 
simplifications this methed can be adapted for the more 
generally encountered systems with one-directional servers. 
The one-directional systems may be treated as a special case 
of the two-directional systems. The one-directional 
algorithm should perform better since the interarrival time 
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distributions will be affected by the interdeparture time 
distributions from upstream only and are not subject to 
circular interdependence. Therefore, the interarrival-time 
distributions may be determined in a single one-directional 
scan without any iteration. The notation used in this 
algorithm for one-way traffic is defined as follows: 

Dik : 	 distance between Locks i and k 

1vik : 	 average tow speed between Locks i and k 

Ovik : 	 standard deviation of tow speeds between Locks i 
and k 

i : the average interarrival time at Lock i 

Umi2 : variance of interarrival times at Lock i
 

_Emi : average interdeparture time at Lock i
 

GDi2 variance of interdeparture times at Lock i
 

2 variance of interdeparture times from origin node 

si 2: variance of lock service times at Lock i 

Odo : 

P. : 	 V/C ratio at Lock i 

'xi : 	 average inflow rate at Lock i 
CAi2, CDi 2 Csi2 	 squared coefficients of variation for 

interarrival times, interdeparture 

times, and service times respectively, 
at Lock i. 

L : 	 total number of locks 

w : 	 the average waiting time at Lock i 

This algorithm has the same inputs and outputs as the 
algorithm for two-way systems. The algorithm consists of 
the following steps: 

1. 	 Compute the average interarrival time and 
interdeparture time for each lock: 

Di = tAi = 	 tDi-1 i=11 .... L (15b) 
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2. 	 Estimate the squared coefficients of variation and, 
from them, the variances of interarrival and 
interdeparture time distributions for each lock. 

2.1 	 Starting from Lock 1, let i=1 

2.2 	 Compute the standard deviation of interarrival times 
at Lock i using the metamodel developed for two-way 
traffic (Eq. 16): 

OAi GDii . 02511n(l+ Dii- 0 vii1) 	 (16e) 

2.3 	 Compute the squared coefficient of variation for 
interarrival times at Lock i 

ai2 
CAi2 


!A, ) (48) 
tAi 

2.4 	 Estimate the squared coefficient of variation for 
interdeparture times at Lock i using the metamodel 
developed for two-way traffic (Eq. 36): 

2Cmi = 0.207+0.795(C~i2(l-pi)+pi)+l.OOl(Csi pi-p2) (3Gb) 

2.5 	 Compute the variance of interdeparture times at Lock i 

GDi2 = CDi2 Di2 	 (49) 

2.6 	 Repeat steps 2.2 - 2.5 for i = 2, ... L 

3. 	 Estimate average waiting times using the relation 
developed for two-way traffic (Eq. 41): 

Wi = 	 i2+20 Si 2 
-GDi 2 (41b) 

2 tAi (l-pi) 
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CHAPTER 5
 
VALIDATION OF NUMERICAL METHOD
 

Comparison of Numerical and Simulated Results 

An experiment is conducted to test how well the 
numerical method duplicates the results of simulations. 
Eight three-lock, two-directional systems are tested. The 
controlled variables in this experiment include the V/C 
ratio p, the variance of lock service times, inflow rate, 
distance between locks, and tow speed. Values for these 
variables are generated randomly and uniformly between 
specified bounds which cover the ranges of values where 
waterway delays can be significant. In this test the ranges 
of the controlled variables are 0.01 to 0.89 for the V/C 
ratio, 0.0007 to 0.3332 for the variance of lock service 
times, 6.0 to 28.5 tows per day for the inflow rate, 5 to 60 
miles for the distance between locks, 108 to 325 miles per 
day for the average tow speed, and 33.84 to 101.52 miles per 
day for the standard deviation of tow speeds. Table 14 
lists the values of controlled variables for each system in 
this experiment. For this system the variances of the 
interdeparture times converged within 0.1% for every lock 
and direction in no more than 6 iterations. The results are 
shown in Tables 15 and 16. 

The performance of the numerical method could be 
discussed in terms of the scanning process and the average
waiting time. The performance of scanning processes is the 
overall performance of arrival, departure and iterative 
scanning processes. The performance indicators are CA and 
ED' which directly measure the variance deviations of 
interarrival times and interdeparture times, respectively, 
between numerical and simulated results. The average 
absolute CA is 3.57% for these 8 systems. For 17 of 24 locks 
in these 8 three-lock systems EA is less than 4%. The 
average absolute ED is 1.80% for these 8 systems. For 23 of 
the 24 locks ED is less than 4%. The results show that the 
scanning process closely approximates the simulation 
estimates for the variances of interarrival and 
interdeparture times. 

The deviation of average waiting times are due to the 
scanning process and the delay function. To clearly define 
the deviation of average waiting times, the following 
notations are used: 
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Wsim: simulated waiting times 

Wnum: 	 waiting times estimated with numerical method 

Wnum2: 	 waiting times estimated by Eq. 41 with the 
simulated variances of interarrival and 
interdeparture times 

AW: 	 Wnum-Wsim, representing the total deviation 
between the numerical method and simulation 

AW2 : 	 Wnum2 -Wsim, representing the deviation due to the 
delay function 

AWl: 	 AW-AW2, representing the deviation due to the 
scanning process 

LW: 	 AW/Wsim*100%, representing the total percentage 
deviation between numerical and simulated results 

EW2: 	 AW2/Wsim*100%, representing the percentage 
deviation due to the delay function 

Ewi: 	Ew-Ew2, representing the percentage deviation due 
to the scanning process 

A question arises about the deviation between Wsim and 
Wnum2 (or AW2) . The Wnum2 is obtained by applying Eq. 41 
while the input variances of interarrival and interdeparture 
times are simulated results. Since the inputs are simulated 
results and Eq. 41 is an exact formula for average waiting 
times, why is there some deviation between Wsim and Wnum2? 
This test assumed the simulated results exactly represent 
the true values. However, simulation is a kind of 
experiment and thus its results are always subject to 
certain errors. More replications and longer simulation 
periods can reduce, but not completely eliminate, the 
errors. That is why there is some deviation between Wsim 
and Wnum2. Table 15 shows that some locks have quite high 
Ew2, but Table 16 shows that for 21 of the 24 locks absolute 
AW2 values are below 0.1 hr, and for 10 locks the absolute 
AW2 values are below 0.01 hr. It may be concluded that the 
delay function produces results consistent with simulated 
ones. 

AWl and EWl indicate the deviation and percentage 
deviation of average waiting times from the scanning 
process. Table 15 shows that 10 of the 24 locks have EWl 
values above 10%. However, Table 16 shows that 21 of the 24 
locks have absolute AWl values below 0.1 hr, and 8 locks 
have values below 0.01 hr. Therefore, the deviations 
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attributable to the scanning process are quite minor in most 
cases. 

The total percentage deviation of waiting times Ew in 
Table 15 shows that 8 of the 24 locks have absolute values 
above 10%. The total deviation of waiting times AW in Table 
16 shows that 21 of the 24 locks have absolute values below 
0.1 hr, and 11 locks have values below 0.01 hr. Therefore, 
the numerical method works satisfactorily. In general, 
these results indicate that the numerical method may be used 
to screen alternatives and greatly reduce the number of lock 
improvement combinations that have to be evaluated by the 
more detailed microscopic simulation model. 

Three types of errors arise in the numerical method: 
from simulation, from the metamodeling procedure, and from 
the iterative scanning process. The errors from simulation 
could be reduced by increasing the number of replications 
and duration of simulated periods. The errors from the 
metamodeling procedure could be reduced by collecting more 
data (that is, increasing the data base). Such improvements 
could increase the accuracy of the numerical method. 

To apply the numerical method to more general networks 
of queues, it is de~irable-to build a new data base for 
redeveloping or validating metamodels since the applicable 
ranges of the current one are mainly appropriate for 
waterways. 
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TABLE 14. VALUES OF CONTROLLED VARIABLES
 

System Lock X*- V/C Dist Speed as2*2 

tows/day mi mi/day 
Mean S.D.*3 

1 1 6.0 0.01 5 270 85 0.0007 
2 6.0 0.07 5 270 85 0.0360 
3 6.0 0.17 5 270 85 0.1897 

2 1 12.0 0.15 5 325 102 0.0309 
2 12.0 0.34 5 325 102 0.1620 
3 12.0 0.25 5 325 102 0.0915 

3 1 18.0 0.22 5 108 34 0.0309 
2 18.0 0.03 5 108 34 0.0006 
3 18.0 0.50 5 108 34 0.1618 

4 1 24.0 0.50 5 162 51 0.1883 
2 24.0 0.29 5 162 51 0.0646 
3 24.0 0.67 5 162 51 0.3330 

5 1 27.0 0.75 10 108 34 0.2271 
2 27.0 0.57 10 108 34 0.1279 
3 27.0 0.89 10 108 34 0.3167 

6 1 27.0 0.75 20 216 68 0.1616 
2 27.0 0.57 20 216 68 0.0909 
3 27.0 0.89 20 216 68 0.2259 

7 1 28.5 0.60 5 325 102 0.1557 
2 28.5 0.05 5 325 102 0.0011 
3 28.5 0.80 5 325 102 0.2738 

8 1 28.5 0.35 60 162 51 0.0645 
2 28.5 0.60 60 162 51 0.1882 
3 28.5 0.80 60 162 51 0.3332 

*1 
*2 

x 2 
as2 : 

two-way flow rate 
variance of service times 

*3 S.D.: standard deviation 
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TABLE 15. COMPARISON OF NUMERICAL AND SIMULATED RESULTS (1)
 

Sys*' Lock Wsim* 2 AW.3 Ew* 4 EW1* 5 Ew2 6 EA*7 ED*8 

hr hr % 01 % % 

1 1 0.0003 .0015 484.95 584.95 -100.00 1.20 1.09 
2 0.0153 .0054 35.57 67.94 -32.37 1.90 1.42 
3 0.0989 .0042 4.22 8.17 -3.95 0.95 0.63 

2 	 1 0.0334 -. 0010 -3.08 47.43 -50.51 3.38 1.98 
2 0.2316 .0047 2.04 14.87 -12.83 3.81 1.55 
3 0.1139 .0009 0.81 25.39 -24.58 3.20 0.99 

3 	 1 0.0542 .0030 5.53 12.45 -6.92 3.20 2.45 
2 0.0008 -. 0008 -100.00 0.00 -100.00 3.74 3.94 
3 0.4621 .0155 3.34 4.63 -1.29 3.14 1.82 

4 	 1 0.4355 .0155 3.55 6.40 -2.85 2.57 -0.23 
2 0.0962 .0094 9.79 28.73 -18.94 5.75 1.59 
3 1.2028 .0016 0.13 4.18 -4.05 2.51 -0.91 

5 	 1 1.3926 .1155 8.30 -0.41 8.71 -0.78 -0.62 
2 0.3901 .0413 10.59 -0.59 11.18 -0.15 0.11 
3 4.9837 -. 0868 -1.74 0.27 -2.01 -0.15 -0.79 

6 	 1 1.2203 .1339 10.97 -0.67 11.64 -0.50 -0.07 
2 0.3286 .0371 11.29 -4.61 15.90 -0.53 1.36 
3 4.4608 -. 0278 -0.62 1.09 -1.71 0.73 -0.93 

7 	 1 0.5430 .0615 11.32 10.57 0.75 6.59 0.85 
2 0.0012 -. 0012 -100.00 0.00 -100.00 10.73 10.82 
3 2.0874 .0391 1.87 5.42 -3.55 5.14 -0.68 

8 	 1 0.1372 .0227 16.57 16.11 0.46 6.51 3.23 
2 0.6381 .0722 11.32 10.30 1.02 9.07 3.03 
3 2.3165 .1134 4.89 6.79 -1.90 9.46 2.18 

*1 Sys 	 System
*2 Wsim 	 simulated waiting time 
*3 AW 	 Wnum-wsim, where Wnum is waiting times estimated with 

numerical method 
*4 Ew 	 AW/Wsim*100% 
*5 EwI 	 EW-EW 2 

*6 EW2 	 (Wnum2-Wsim)/Wsim*100%, where Wnum2 is waiting times 
estimated by Eq. 41 with simulated variances of 
interarrival and interdeparture times 

*7 EA 	 (CA2num-CA2sim)/CA2sim*100%, where CA2 num is variance of 
interarrival times estimated by numerical method;
CA2 im is simulated variance of interarrival times 

*8 ED (CD num-OD2sim)/CD2sim*100%, where D2num is variance of 
interarrival times estimated by numerical method;
CD2Sim is simulated variance of interarrival times 

73
 



TABLE 16. COMPARISON OF NUMERICAL AND SIMULATED RESULTS (2)
 

Sys*' Lock Wsim* 2 AW* 3 AW1* 4 AW2* 5 

hr hr hr hr 

1 1 0.0003 .0015 0.0018 -0.0003 
2 0.0153 .0054 0.0104 -0.0050 
3 0.0989 .0042 0.0091 -0.0039 

2 	 1 0.0334 -. 0010 0.0159 -0.0169 
2 0.2316 .0047 0.0344 -0.0297 
3 0.1139 .0009 0.0289 -0.0280 

3 	 1 0.0542 .0030 0.0067 -0.0037 
2 0.0008 -. 0008 0.0000 -0.0008 
3 0.4621 .0155 0.0214 -0.0059 

4 	 1 0.4355 .0155 0.0279 -0.0124 
2 0.0962 .0094 0.0276 -0.0182 
3 1.2028 .0016 0.0504 -0.0488 

5 	 1 1.3926 .1155 -0.0058 0.1213 
2 0.3901 .0413 -0.0023 0.0436 
3 4.9837 -. 0868 0.0135 -0.1003 

6 	 1 1.2203 .1339 -0.0081 0.1420 
2 0.3286 .0371 -0.0151 0.0522 
3 4.4608 -. 0278 0.0487 -0.0765 

7 	 1 0.5430 .0615 0.0574 0.0041 
2 0.0012 -. 0012 0.0000 -0.0012 
3 2.0874 .0391 0.1132 -0.0741 

8 	 1 0.1372 .0227 0.0221 0.0006 
2 0.6381 .0722 0.0657 0.0065 
3 2.3165 .1134 0.1573 -0.0439 

*1 Sys 	 System
*2 Wsim 	 simulated waiting time 
*3 AW 	 Wnum-Wsim, where Wnum is waiting times estimated 

with numerical method 
*4 AW1 	 AW-AW2 
*5 AW2 	 Wnum2-Wsim, where W11,, 2 is waiting times estimated 

by Eq. 41 with simulated variances of interarrival 
and interdeparture times 
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APPENDIX A
 

List of Variables 

Variable Description 

ANB(i): Average number of barges for O-D pair i, i=1,NP 

BIAS(i): Chamber assignment policy for favoring 
main chamber at lock i, i=l,NL, (min) 

the use of 

DIST(i): Link length, i=l,NL, (miles) 

DISTL(i): Distance 
i=l,NL, 

between 
(miles) 

in-node to lock on link i, 

DTEX(i): Mean of dwell time for O-D pair i, i=l,NP, (days) 

DTSTD(i): Standard deviation 
i=l,NP, (days) 

of dwell time for O-D pair i, 

EXS: Mean of tow speed, (miles/day) 

FRB(i,j): The lower bound of interval j in the tow size 
distribution table for O-D pair i, i=l,NP, 
j=I,NBI+1 

FRI(i): The lower bound of interval i for trip generation 
table, i=l,NII+l 

FRS(i,j,k,l): The lower bound of interval 1 for lock 
service time table for lock i, chamber j, cut 
k, i=I,NL, j=I,NPL(i), k=l,ML(i,j), L=1,NSI+l 

FSTA(i,j): Average stall frequency at lock i, chamber j, 

(#/yr) 

ID(i): Index of destination for O-D pair i, i=I,NP 

IDBG: =1, to actuate the debugging function 

IDBG1: =1, to debug the sequence of time advance and event 
type 

IDBG2: =1, to debug the lock event 
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IDBG3: 	 =1, to debug the lock event only at certain locks 

ILBG(i): 	 =1, to actuate the debugging function at lock i, 
i=I,NL 

INS: 	 Specifying the starting inventory level INS while 

printing detail inventory information 

IO(i): 	 Index of origin for O-D pair i, i=1,NP 

IOF: 	 =1, to plot inventory level 

101: 	 =1, to print input data 

IOM: 	 =1, to provide the inventory information 

IOU: 	 =1, to plot cumulative delivery and consumption 

IP: 	 Indicator for printing wait time data 
=0, no printing 
=1, by lock and direction in different files 
=2, in one file 

IXB(i,j) : 	 Random vimber seed of tow size (number of barges) 
for O-D pair i, direction j, i=l,NP, j=1,2 

IXC(i) : 	 Random number seed for coal consumption at node i, 
i=I,NN 

IXL(i,j,k) : 	 Random number seed for lock service time of k 
cuts at lock i, chamber j, i=I,NL, 
j=I,NPL(i), k=l,ML(i,j) 

IXS: 	 Random number seed for tow speed 

IXSD(i,j) : 	 Random number seed for stall duration at lock 
i, chamber j, i=1,NL, j=I,NPL(i) 

IXST(i,j): 	 Random number seed for stall frequency at 
lock i, chamber j, i=I,NL, j=I,NPL(i) 

IXT(i,j) : 	 Random number seed for inter-trip-generation-time 
for O-D pair i, direction j, i=I,NP, j=1,2 

KSG: 	 Indicator of trip generation distribution 
=1, empirical distribution 
=2, Poisson distribution 
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KST: 	 Indicator of lock service time distribution 
=1, empirical distribution 
=2, uniform distribution 
=3, exponential distribution 

ML(ij): 	 Types of cuts at lock i, chamber j, i=I,NL, 
j=l,NPL(i) 

NBI: 	 Total number of intervals in the distribution table 
for the number of barges 

NCB(i,j,k): 	 Upper limit on cut size k, at lock i, chamber 
j, i=l,NL, j=I,NPL(i), k=l,ML(i,j) 

NC: 	 O-D pairs 1-NC are coal traffic 

NCTL(i) : Lower bound of number of coal barges per coal tow 
for coal O-D pair i, i=l,NC 

NCTU(i): Upper bound of number of coal barges per coal tow 

for coal O-D pair I, I=I,NC 

NI(i): Index of in node for link i, i=I,NL 

NII: Total number of intervals in the trip generation 
table 

NIS: Number of different starting inventory levels 

NL: Total number of locks/links 

NN: Total number of nodes 

NO(i): Index of out node for link i, i=l,NL 

NP: Total number of O-D pairs 

NPL(i): Total number of chambers in lock i, i=l,NL 

NRAN: Index of random number set 

NSI: Total number of intervals in lock service time 
distribution table 

NTP: Total number of simulation time periods 
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NTR: 	 Index of trip rate set 

PLOAD: 	 Barge payload, (short-tons) 

RCON(i,j): 	 Average consumption rate for simulation time 
period i, at node j, i=I,NTP, j=I,NN, (short­
tons/day) 

RCT(i) : 	 Coal barge fraction of a tow for O-D pair i, 
i=l ,NC 

RCTL(i): 	 Lower bound ratio of RCT(i), i=l,NC 

RCTU(i): 	 Upper bound ratio of RCT(i), i=1,NC 

RL(i): 	 Lower bound ratio of average consumption rate at 
node i, i=I,NN 

RR(i) : 	 Upper bound ratio of average consumption rate at 
node i, i=I,NN 

RSTA(i,j): 	 Stall duration at lock i, chamber j, i=l,NL, 
j=I,NPL (i) 

RSTD(i,j,k): 	 Ratio to tighten the standard deviation for 
lock service time distribution, i=l,NL, 
j=l,NPL(i), k=1,ML(i,j) 

RV: 	 Ratio of backhaul speeds to linehaul speeds 

SFST(i,j): 	 jth starting inventory level at node i, 
i=l,NN, j=lNIS 

SRL(i): 	 Lower bound ratio of TLO(i), i=l,NL 

SRR(i) : 	 Upper bound ratio of TLO(i), i=1,NL 

STDS: 	 Standard deviation of tow speeds 

TLO(i,j,k): 	 Average lock service time for cut type k, at 
lock i, chamber j, i=l,NL, j=l,NPL(i), 
k=l,ML(i,j) (days/tow) 

TN(i,j): 	 Trip rate for O-D pair i, simulation time period 
j, i=l,NP, j=l,NTP, (tow trips/day) 

TSTOP(i): 	 End of simulation time period i, i=1,NTP, (day) 
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TUT: 	 Specified time interval for printing inventory 
levels, (days) 

TWT: Specific time period to provide queue length data, 
(day) 

Input Format 

Model Input 

The model input is divided into 13 sets and is 
described below: 

1. 	 Basic model parameters: (1 line)
 
NNNLNPNTPNCNISKST,KSG, IP (1216)
 

2. Links/Locks characteristics: ((4+3*NPL(i))*NL 
lines) 

(1) 	NI(i) ,NO(i) ,NPL(i) (1216) 
(2) 	 DIST(i),DISTL(i) (10F7.2) 
(3) 	 FSTA(i,j),J=l.NPL(i) (10F7.2) 
(4) 	 RSTA(i,j),j=INPL(i) (10F7.-) 
(5) 	 Chamber characteristics: (3*NPL(i) lines) 

a. 	 ML(i.j (1216) 
b. 	 TLO(i,!,k)kk=1,ML(i,j) (8F8.5) 
c. 	 NCB(ijik),k=1,ML(ii) (1216) 

,j=1,NPL(i) 
i=l ,NL 

3. 	 Traffic demand: (3*NP lines) 
(1) 	IO(i),ID(i) (1216) 
(2) 	 DTEX(i),DTSTD(i) (10F7.2) 
(3) 	 ANB(i) (10F7.2)
 

i=l,NP
 

4. Coal tow characteristics: (3 lines, if NC>O) 
(1) 	RCT(i),i=INC (10F7.2) 
(2) 	 NCTL(i),i=INC (1216) 
(3) 	 NCTU(i),i=I,NC (1216) 

5. 	 Speeds: (2 lines) 
(1) 	EXS,STDS (10F7.2)
(2) 	 RV (1OF7.2) 

6. 	 Simulation time periods (NTP lines)
 
TSTOP(i) (10F7.2)
 
i=i, NTP
 



7. 	 Lock service time distributions: 
(1) if KST=1 (NL*NPL(i)*(NSI+l)+1 lines) 

a. 	 NSI (1216)
b. 	 FRS (i, j,k i) ,k=I,ML (i, J) (6F12.4) 

i=!, NSI+l 
j=I,NPL(i)
 
i=1,NL
 

(2) 	 if KST=2 (NL lines) 
a. 	 SRL(i),SRR(i) (10F7.2) 

i=l ,NL 

8. 	 Trip generation distributions: 
(1) 	if KSG=I (NII+2) 

a. 	 NII (1216) 
b. 	 FRI (i) (6F12.4)
 

i=l, NII+I
 

9. 	 T-w size distributions: (NP*(N$I+1)+l lines) 
(1) 	NBI (1216) 
(4) 	 FRB(ii) (6F12.4)
 

j =i, NBI+1
 
i=I,NP
 

10. 	 Inventories: (2*NN+NTP+3) 
(1) 	if NC>0 

a. 	 SFST(i,1), i=I.NIS (7F10.1) 
i=I,NN 

b. 	 PLOAD (2F10.1) 
c. 	 RCON(i,j),1=1,NN (10F7.1) 

i=l,NTP 
d. 	 RL(i)0RR(i) (10F7.2) 

i=l, NN 
e. 	 INS (1216) 

(2) 	 TUT (10F7.2) 

11. 	 BIAS(i),i=I,NL (10F7.2) (1 line) 

12. 	 Debugging function: (2 or 3 lines) 
(1) 	IOIIOM,IOUIOF (1216) 
(2) 	 IDBG, IDBGI, IDBG2, IDBG3, IDBG4, IDBG5. IDBG6 

(1216) 
(3) 	 if IDBG3=I 

a. 	 ILBG(iWi=1,NL (1216) 

13. 	 if KST=1: 
(1) RSTD(ij,k),k=I,ML(i,j) (6F12.4) 

j=l,NPL(i, j) 
i=INL 
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Random Number Seeds Input 

1. 	 NRAN (7111) (1 line) 

2. 	 ((NPL(i)+2)*NL lines) 
(1) 	IXST(ij),j=I,NPL(i) (7111) 
(2) 	 IXSD(i,j),j=I,NPL(i) (7111) 
(3) 	 IXL(ij,k),k=1,ML(iJ) (7111) 

j=I,NPL(i) 
i=l, NL 

3. 	 (3*NP lines) 

(1) 	IXDT(i) (7111) 
(2) 	 IXT(i,J),IXB(iJ) (7111) 

j=1,2 
i=I,NP 

4. 	 IXS (7111) 

5. 	 if NC>O (NN lines) 
(1) 	IXC(i) (7111) 

6. TWT (10F7.2) (1 line) 

Trip Volume Input 

1. 	 NTR (1216) 

2. 	 TN(ii),j=I,NTP (12F6.2) 
1=1, NP 
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APPENDIX B
 

Residual Analysis of Metamodels 

Residual analysis is intended to check whether the 
residuals of metamodels are identically and independently 
distributed (IM)), which is an important assumption of 
linear regression analysis. 

The residual analysis in the study was performed with 
the SAS commercial statistical software package. The ARIMA 
process in SAS was employed to test whether the correlation 
of the residuals is within the 95% confidence interval. The 
results are summarized as follows: 

Metamodel Correlation 95% Confidence Interval 

aa 0.17 0.19 

CA2 0.14 0.22 

CD2 0.20 0.22 

Cd2 0.02 0.15 

The results show that the correlations are all within 
the 95% confidence intervals, indicating that the residuals 
of each metamodel are identically and independently 
distributed. Therefore, the metamodels developed in the 
study do not violate the IID assumption of linear 
regression analysis. 

89
 



Form Approve
REPORT DOCUMENTATION PAGE 	 1 O1m No. 00d-o1 

aubicg reporting burden for this collection of infoematiorn is estimated to average I hour per response. inludi•ig the time for revitewng instructlons, searching existing data sources. 
ghnqand maintaining the data needed. and complteting and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this 

tor reducing this burden, to Wa•hingOtn Headquatersl •ervices. 12 1S jelferson 
Davis mighway. Suite 1Q04. AhrlngtOn. V.A .. 20.1430Ž. and to the Offe.of Management and Budget. Paperwork P4RdtuonProlo, (0704-0I1S), i•shington DC 20S0•3. 
coll	e	ion Of flroation. including s llOqq, 4ions 	 Directoratelfot infomation Operations and Retports 

t. AGENCY USE ONLY (Leave blank) 1 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 

4.TITLE AND SUBTITLE S. 	 FUNDING NUMBERS 

Delay Estimation on Congested Waterways 

6. AUTHOR(S) 

Melody Dzwo-Min Dai 

7. 	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 
USACE, Water Resources Support Center REPORT NUMBER
 
Institute for Water Resources
 
Navigation Division IWR Report 93-R-8
 
Casey Building
 
Ft. Belvoir, VA 22060-5586
 

9. 	SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
 
AGENCY REPORT NUMBER
 

11. SUPPLEMENTARY NOTES 

Available from National Technical Information Service, 5285 Port Royal Road, 
Springfield, VA 22161 

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 	 12b. DISTRIBUTION CODE 

Unclassified/Unlimited 

13. ABSTRACT (Maximum200words) A simulation model has been developed for estimating delays 

on congested waterways and a numerical method has been developed to approximate the 
results of the simulation model. The structural relations in the numerical method 
were largely based on exact analytic results from queueing theory while their unknown 
parameters were estimated statistically with results from the simulation model. The 
numerical method is valuable for screening improvement alternatives, while the 
simulation model is valuable for very detailed and accurate analysis. 

The simulation model is microscopic and event-scanning. It can accommodate 
generally distributed trip generations and service times, unequal parallel servers, 
and random failure effects. Its outputs include tow travel times along waterways, 
tow delays at each lock, inventory levels, expected stock-out amounts for commodities 
transported on waterways, and variances of interarrival and interdeparture times at 
each lock. The simulation model has been validated in comparisons with established 
theoretical results and empirical data from the U.S. inlands waterways. 

14. SUBJECT TERMS Lock delay models, microscopic simulation model, IS.NUMBER OF PAGES 

numerical method, networks of queues, delay function, algorithm 101 

for one-way and two traffic systems variables and input format. 16. PRICE CODE 

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 

OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified Unlimited 
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-10 
298 102 


